Select Language

SMD LED Yellow Green 120-Degree Viewing Angle - Package Dimensions - Forward Voltage 2.0V Typ - Power Dissipation 72mW - English Technical Datasheet

Technical datasheet for a diffused yellow-green SMD LED. Includes detailed specifications for luminous intensity, viewing angle, forward voltage, binning ranks, package dimensions, and recommended soldering profiles.
smdled.org | PDF Size: 0.5 MB
Rating: 4.5/5
Your Rating
You have already rated this document
PDF Document Cover - SMD LED Yellow Green 120-Degree Viewing Angle - Package Dimensions - Forward Voltage 2.0V Typ - Power Dissipation 72mW - English Technical Datasheet

1. Product Overview

This document details the specifications for a surface-mount device (SMD) Light Emitting Diode (LED) utilizing a diffused lens and an AlInGaP (Aluminum Indium Gallium Phosphide) semiconductor material to produce a yellow-green light output. The device is designed for automated printed circuit board (PCB) assembly processes, making it suitable for high-volume manufacturing. Its compact form factor and compatibility with standard SMD placement equipment cater to space-constrained applications across various electronic sectors.

1.1 Core Features and Advantages

1.2 Target Markets and Applications

This LED is engineered for a broad spectrum of electronic equipment where reliable, compact status indication or illumination is required. Primary application areas include:

2. In-Depth Technical Parameter Analysis

The following section provides a detailed, objective interpretation of the key electrical, optical, and thermal parameters that define the device's performance envelope.

2.1 Absolute Maximum Ratings

These ratings define the stress limits beyond which permanent damage to the device may occur. Operation at or near these limits is not recommended for reliable performance.

2.2 Electro-Optical Characteristics

These parameters are measured under standard test conditions (Ta=25°C, IF=20mA) and represent the typical performance of the device.

3. Binning System Explanation

To ensure consistency in mass production, LEDs are sorted into performance bins. This allows designers to select parts that meet specific minimum criteria for their application.

3.1 Forward Voltage (Vf) Binning

LEDs are categorized based on their forward voltage drop at 20mA. This helps in designing power supplies and ensuring uniform brightness when multiple LEDs are connected in parallel.

Tolerance within each bin is ±0.1V.

3.2 Luminous Intensity (Iv) Binning

This is the primary binning for brightness. Parts are sorted into groups with defined minimum and maximum luminous intensity values.

Tolerance on each intensity bin is ±11%.

3.3 Dominant Wavelength (Wd) Binning

This binning ensures color consistency. LEDs are grouped by their dominant wavelength, which directly correlates to the perceived hue.

Tolerance for each wavelength bin is ±1 nm.

4. Performance Curve Analysis

While specific graphs are referenced in the datasheet, their implications are critical for design.

4.1 Current vs. Voltage (I-V) Characteristic

The I-V curve for an LED is exponential. The typical forward voltage (2.0V) is specified at 20mA. Designers must use a current-limiting resistor or constant-current driver to ensure the operating point remains stable, as a small change in voltage can cause a large change in current, potentially exceeding maximum ratings.

4.2 Luminous Intensity vs. Forward Current

Luminous intensity is approximately proportional to forward current within the operating range. Operating above the recommended DC current (20mA) may increase brightness but will also increase junction temperature, potentially reducing lifespan and causing color shift.

4.3 Temperature Dependence

LED performance is temperature-sensitive. Typically, forward voltage decreases with increasing temperature, while luminous intensity also decreases. Operating at the upper limit of the temperature range (85°C) will result in lower light output compared to operation at 25°C.

5. Mechanical and Packaging Information

5.1 Device Dimensions and Polarity

The LED package has specific physical dimensions critical for PCB footprint design. The datasheet includes a detailed dimensional drawing. Polarity is indicated by a cathode mark (typically a notch, green dot, or other marking on the package). Correct orientation is essential for circuit operation.

5.2 Recommended PCB Pad Design

A land pattern (footprint) is provided for the PCB. Adhering to this recommended pad layout is crucial for achieving reliable solder joints during reflow soldering, ensuring proper mechanical attachment and thermal dissipation.

5.3 Tape and Reel Packaging Specifications

The device is supplied in embossed carrier tape with a protective cover tape, wound onto 7-inch (178mm) diameter reels. Key specifications include:

6. Soldering and Assembly Guidelines

6.1 IR Reflow Soldering Profile (Pb-Free)

A suggested temperature profile compliant with J-STD-020B is provided for lead-free solder processes. Key parameters include:

Note: The exact profile must be characterized for the specific PCB assembly, considering board thickness, component density, and solder paste used.

6.2 Hand Soldering

If hand soldering is necessary, extreme care must be taken:

6.3 Cleaning

If post-solder cleaning is required, only specified solvents should be used to avoid damaging the LED's plastic lens and package. Recommended agents include ethyl alcohol or isopropyl alcohol. The LED should be immersed at normal temperature for less than one minute.

7. Storage and Handling Cautions

7.1 Moisture Sensitivity

The LED package is moisture-sensitive. Prolonged exposure to ambient humidity can lead to popcorn cracking during reflow soldering.

7.2 Drive Method

LEDs are current-operated devices. To ensure uniform brightness when connecting multiple LEDs, they should be driven with a constant current source. Connecting LEDs directly in parallel with a single voltage source and resistor is not recommended due to variations in forward voltage (Vf) between individual devices, which can lead to significant differences in current and, consequently, brightness. A series connection with an appropriate current-limiting resistor or the use of individual resistors for each parallel LED is preferred.

8. Application Notes and Design Considerations

8.1 Current Limiting

Always use a series resistor or constant-current driver to set the forward current to the desired value (e.g., 20mA). The resistor value can be calculated using Ohm's Law: R = (Vsupply - Vf_LED) / I_desired. Use the maximum Vf from the datasheet (2.4V) for a conservative design to ensure the current does not exceed limits even with a low-Vf LED.

8.2 Thermal Management

While the power dissipation is low (72mW), effective thermal management on the PCB can help maintain performance and longevity, especially in high ambient temperature environments or when driving at higher currents. Ensuring a good thermal connection from the LED pads to the PCB copper can help dissipate heat.

8.3 Optical Design

The 120-degree viewing angle and diffused lens provide a wide, soft light emission. This makes the LED suitable for applications requiring even illumination over an area or where the indicator needs to be visible from a wide range of angles, without the need for secondary optics like light pipes in many cases.

9. Frequently Asked Questions (Based on Technical Parameters)

9.1 What is the difference between Peak Wavelength and Dominant Wavelength?

Peak Wavelength (λP) is the physical wavelength at the highest intensity point in the LED's emission spectrum. Dominant Wavelength (λd) is a calculated value based on human color perception (CIE coordinates) that represents the single wavelength of the perceived color. For design purposes, especially regarding color matching, the Dominant Wavelength and its binning are more relevant.

9.2 Can I drive this LED at 30mA continuously?

While the Absolute Maximum Rating for DC Forward Current is 30mA, the Electro-Optical Characteristics are specified at 20mA. Operating at 30mA continuously will generate more heat, potentially reducing luminous efficiency and lifespan. For reliable long-term operation, it is advisable to design for a current at or below the typical test condition of 20mA.

9.3 How do I interpret the binning codes when ordering?

You must specify the desired bin codes for Vf, Iv, and Wd based on your application's requirements for voltage consistency, brightness level, and color point. For example, an order might specify bins D3 (Vf), R1 (Iv), and D (Wd) to get parts with medium voltage, high brightness, and a specific yellow-green hue.

10. Operational Principles and Technology Context

10.1 AlInGaP Semiconductor Technology

This LED uses an Aluminum Indium Gallium Phosphide (AlInGaP) semiconductor material. This material system is highly efficient for producing light in the amber, yellow, and green regions of the visible spectrum. Compared to older technologies, AlInGaP LEDs offer higher brightness, better efficiency, and improved temperature stability.

10.2 Diffused Lens Function

The diffused (non-clear) lens contains scattering particles that mix the light emitted from the small semiconductor chip. This process broadens the viewing angle (to 120 degrees) and creates a more uniform, softer appearance by eliminating the bright "hot spot" typically seen in LEDs with clear lenses. This is ideal for applications where the LED is viewed directly.

LED Specification Terminology

Complete explanation of LED technical terms

Photoelectric Performance

Term Unit/Representation Simple Explanation Why Important
Luminous Efficacy lm/W (lumens per watt) Light output per watt of electricity, higher means more energy efficient. Directly determines energy efficiency grade and electricity cost.
Luminous Flux lm (lumens) Total light emitted by source, commonly called "brightness". Determines if the light is bright enough.
Viewing Angle ° (degrees), e.g., 120° Angle where light intensity drops to half, determines beam width. Affects illumination range and uniformity.
CCT (Color Temperature) K (Kelvin), e.g., 2700K/6500K Warmth/coolness of light, lower values yellowish/warm, higher whitish/cool. Determines lighting atmosphere and suitable scenarios.
CRI / Ra Unitless, 0–100 Ability to render object colors accurately, Ra≥80 is good. Affects color authenticity, used in high-demand places like malls, museums.
SDCM MacAdam ellipse steps, e.g., "5-step" Color consistency metric, smaller steps mean more consistent color. Ensures uniform color across same batch of LEDs.
Dominant Wavelength nm (nanometers), e.g., 620nm (red) Wavelength corresponding to color of colored LEDs. Determines hue of red, yellow, green monochrome LEDs.
Spectral Distribution Wavelength vs intensity curve Shows intensity distribution across wavelengths. Affects color rendering and quality.

Electrical Parameters

Term Symbol Simple Explanation Design Considerations
Forward Voltage Vf Minimum voltage to turn on LED, like "starting threshold". Driver voltage must be ≥Vf, voltages add up for series LEDs.
Forward Current If Current value for normal LED operation. Usually constant current drive, current determines brightness & lifespan.
Max Pulse Current Ifp Peak current tolerable for short periods, used for dimming or flashing. Pulse width & duty cycle must be strictly controlled to avoid damage.
Reverse Voltage Vr Max reverse voltage LED can withstand, beyond may cause breakdown. Circuit must prevent reverse connection or voltage spikes.
Thermal Resistance Rth (°C/W) Resistance to heat transfer from chip to solder, lower is better. High thermal resistance requires stronger heat dissipation.
ESD Immunity V (HBM), e.g., 1000V Ability to withstand electrostatic discharge, higher means less vulnerable. Anti-static measures needed in production, especially for sensitive LEDs.

Thermal Management & Reliability

Term Key Metric Simple Explanation Impact
Junction Temperature Tj (°C) Actual operating temperature inside LED chip. Every 10°C reduction may double lifespan; too high causes light decay, color shift.
Lumen Depreciation L70 / L80 (hours) Time for brightness to drop to 70% or 80% of initial. Directly defines LED "service life".
Lumen Maintenance % (e.g., 70%) Percentage of brightness retained after time. Indicates brightness retention over long-term use.
Color Shift Δu′v′ or MacAdam ellipse Degree of color change during use. Affects color consistency in lighting scenes.
Thermal Aging Material degradation Deterioration due to long-term high temperature. May cause brightness drop, color change, or open-circuit failure.

Packaging & Materials

Term Common Types Simple Explanation Features & Applications
Package Type EMC, PPA, Ceramic Housing material protecting chip, providing optical/thermal interface. EMC: good heat resistance, low cost; Ceramic: better heat dissipation, longer life.
Chip Structure Front, Flip Chip Chip electrode arrangement. Flip chip: better heat dissipation, higher efficacy, for high-power.
Phosphor Coating YAG, Silicate, Nitride Covers blue chip, converts some to yellow/red, mixes to white. Different phosphors affect efficacy, CCT, and CRI.
Lens/Optics Flat, Microlens, TIR Optical structure on surface controlling light distribution. Determines viewing angle and light distribution curve.

Quality Control & Binning

Term Binning Content Simple Explanation Purpose
Luminous Flux Bin Code e.g., 2G, 2H Grouped by brightness, each group has min/max lumen values. Ensures uniform brightness in same batch.
Voltage Bin Code e.g., 6W, 6X Grouped by forward voltage range. Facilitates driver matching, improves system efficiency.
Color Bin 5-step MacAdam ellipse Grouped by color coordinates, ensuring tight range. Guarantees color consistency, avoids uneven color within fixture.
CCT Bin 2700K, 3000K etc. Grouped by CCT, each has corresponding coordinate range. Meets different scene CCT requirements.

Testing & Certification

Term Standard/Test Simple Explanation Significance
LM-80 Lumen maintenance test Long-term lighting at constant temperature, recording brightness decay. Used to estimate LED life (with TM-21).
TM-21 Life estimation standard Estimates life under actual conditions based on LM-80 data. Provides scientific life prediction.
IESNA Illuminating Engineering Society Covers optical, electrical, thermal test methods. Industry-recognized test basis.
RoHS / REACH Environmental certification Ensures no harmful substances (lead, mercury). Market access requirement internationally.
ENERGY STAR / DLC Energy efficiency certification Energy efficiency and performance certification for lighting. Used in government procurement, subsidy programs, enhances competitiveness.