1. Gabatarwa & Bayyani

RainbowSight yana wakiltar ci gaba mai mahimmanci a fagen ji na hanyar kamara don injinan mutum-mutumi. An ƙirƙira shi a MIT, wannan dangin na'urar ji yana magance matsalar mahimmanci: samar da bayanan lissafi na gida mai zurfi daga saman ji masu lanƙwasa da kuma kowane bangare, waɗanda suka fi dacewa da yanayin halitta kuma suna da amfani don sarrafa abubuwa masu sarkakiya fiye da na'urorin ji na gargajiya masu lebur. Babban ƙirƙira shine sabon tsarin haske na bakan gizo ta amfani da fitilun LED na RGB masu iya sarrafawa, wanda ke sauƙaƙa ƙirar gani, haɓaka ƙirar ƙira, kuma yana ba da damar yin stereo na hotuna daidai don sake gina siffofi na 3D akan saman lanƙwasa.

Dalilin ya samo asali ne daga iyakokin tsarin da suka gabata kamar GelSight, waɗanda, yayin da suke ba da bayanai masu kyau, galibi suna da ƙira masu girma, masu lebur waɗanda ke da wahalar daidaitawa da siffofi daban-daban na ƙarshen aiki. Ƙirar RainbowSight ta ba da fifiko ga daidaitawa, sauƙin ƙira, da ƙarancin daidaita gani, wanda ke sa ji mai zurfi ya zama mai sauƙi ga masu injinan mutum-mutumi.

2. Fasaha ta Tsaki & Ƙira

Tsarin RainbowSight an gina shi ne a kan mahimman abubuwa guda uku: tsarin haske, jikin ji mai lanƙwasa, da hanyar daidaitawa.

2.1 Tsarin Haske na Bakan Gizo

Na'urar tana amfani da zobe na fitilun LED na RGB masu iya sarrafawa a gindinta. Ba kamar hanyoyin da ke amfani da fitilu masu launi daban-daban ba (misali, ja, kore, shuɗi daga wurare daban-daban), ana shirya fitilun LED don fitar da bakan gizo mai ci gaba, mai bambanta a sarari. Wannan yana haifar da canjin launi mai santsi a ko'ina cikin saman ji mai lanƙwasa mai nuna haske a ciki wanda aka lulluɓe da Layer mai ɗan ƙaramin haske. Lokacin da wani abu ya canza saman elastomer mai laushi, kamara tana ɗaukar tsarin launi da aka canza. Wannan hoton guda ɗaya, mai gauraye yana ƙunshe da isassun bayanai daga yawancin "hanyoyin haske" masu tasiri waɗanda aka sanya su cikin launi, yana ba da damar aiwatar da dabarun stereo na hotuna tare da harbin kamara guda ɗaya, yana sauƙaƙa kayan aiki idan aka kwatanta da tsarin kamara da yawa ko na walƙiya da yawa.

2.2 Ƙirar Kayan Aikin Na'urar Ji

Na'urar tana da ƙanƙanta kuma tana da tsaki mai lanƙwasa, sau da yawa mai siffar rabin duniya ko yatsa, mai gani. Ƙirar tana da ma'auni, tare da samfuran da suka kama daga girman dime (~20 mm) zuwa manyan yatsu masu ɗaukar abu. Babban fa'ida shine rage buƙatar daidaitawar gani daidai. Canjin bakan gizo yana da gafara a asalinsa, saboda sanya launi yana ba da alamomin jagora, yana rage dogaro ga madaidaicin wuraren fitilu masu mahimmanci da aka saba da su a cikin na'urorin ji na lanƙwasa na farko.

2.3 Daidaitawa & Sake Gina Zurfi

Tsarin yana buƙatar matakin daidaitawa don tsara launin da aka gani a kowane pixel zuwa madaidaicin vector na al'ada. Wannan ya haɗa da ɗaukar hotunan tunani na na'urar ji da ba ta lalace ba a ƙarƙashin hasken bakan gizo don gina taswira tsakanin sararin launi (R, G, B) da sararin al'ada (Nx, Ny, Nz). Yayin aiki, ana ƙididdige bambanci tsakanin hoton na yanzu da hoton tunani. Ana fassara canje-canjen launi zuwa ƙididdiga na al'adar saman ta amfani da taswirar da aka riga aka daidaita. Daga nan sai a sake gina taswirar zurfi (filin tsayi na 2.5D) ta hanyar haɗa filin al'ada. Takardar ta lura da haɓakawa a cikin wannan tsarin daidaitawa akan hanyoyin da suka gabata, wanda ke haifar da taswirorin zurfi mafi daidai.

Ana iya taƙaita alaƙar ta hanyar lissafin stereo na hotuna, inda ƙarfin $I$ da aka gani a pixel ya zama aiki na al'adar saman $\mathbf{n}$, albedo $\rho$, da vector haske $\mathbf{l}$: $I = \rho \, \mathbf{n} \cdot \mathbf{l}$. A cikin RainbowSight, vector haske $\mathbf{l}$ yana aiki da kyau a cikin tashar launi.

3. Sakamakon Gwaji & Aiki

Takardar tana gabatar da shaida mai ƙarfi na iyawar RainbowSight ta hanyar gwaje-gwaje masu inganci da ƙididdiga.

3.1 Daidaiton Sake Gina Siffa

Gwaje-gwaje sun nuna ikon na'urar na sake gina cikakken lissafin abubuwan da ke matsawa cikin saman elastomer. Misalai sun haɗa da sukur, ƙafafu, da sauran ƙananan sassa masu sarkakiya. Sakamakon taswirorin zurfi da gajimaren maki 3D (kamar yadda aka nuna a cikin Fig. 1 C & D na PDF) suna nuna tudu, zaren, da siffofi. Babban ƙudurin sarari yana ba da damar gane sifofi masu kyau waɗanda ke da mahimmanci don gane abu da amsawar sarrafawa.

3.2 Kwatance da Hanyoyin Madadin

Marubutan sun kwatanta hasken bakan gizo da sauran dabarun haske na gama gari don na'urorin ji na hanyar kamara, kamar amfani da fitilun LED masu launi daban-daban. Manyan fa'idodin da aka nuna sune:

  • Mafi Girman Daidaiton Haske: Canjin bakan gizo yana ba da mafi daidaitaccen ɗaukar hoto a ko'ina cikin saman da ke da lanƙwasa sosai, yana guje wa wurare masu duhu ko cikakke.
  • Sauƙaƙe Daidaitawa: Guda ɗaya, ci gaba mai ci gaba yana sauƙaƙa ƙirar daidaitawar hotuna idan aka kwatanta da haɗa bayanai daga hanyoyin haske daban-daban.
  • Ƙarfi ga Tolerances na Masana'antu: Ƙananan bambance-bambance a wurin sanya LED ko siffar na'urar suna da ƙaramin tasiri akan ingancin sake gina saboda yanayin gauraye na haske.
Waɗannan kwatancen suna jaddada fa'idodin aiki na RainbowSight don aiwatarwa a duniyar gaske.

4. Binciken Fasaha & Tsarin Aiki

4.1 Ka'idojin Stereo na Hotuna

Babban algorithm na RainbowSight ya dogara ne akan Stereo na Hotuna. Stereo na hotuna na gargajiya yana amfani da hotuna da yawa na wurin da aka ɗauka a ƙarƙashin hanyoyin haske da aka sani daban-daban don warware al'adar saman kowane pixel. Ƙirƙira na RainbowSight shine aiwatar da wani nau'i na "stereo na hotuna mai launi" tare da hoto guda. Haske na bakan gizo mai bambanta a sarari yana kwaikwayon samun hanyoyin haske da yawa daga wurare daban-daban, duk suna aiki lokaci ɗaya amma an bambanta su ta hanyar sa hannun su na gani (launi). Al'adar saman a wani batu tana rinjayar gauraye na launukan da aka nuna ga kamara. Ta hanyar daidaita tsarin, ana fassara wannan gaurayen launi zuwa vector na al'ada.

Tsarin lissafin ya haɗa da warware al'ada $\mathbf{n}$ wanda ya fi bayyana vector launi $\mathbf{I} = [I_R, I_G, I_B]^T$ da aka gani a ƙarƙashin matrix haske $\mathbf{L}$ wanda ke sanya jagora da ƙarfin gani na haske masu tasiri: $\mathbf{I} = \rho \, \mathbf{L} \mathbf{n}$. Anan, $\rho$ shine albedo na saman, ana ɗauka akai-akai don elastomer da aka lulluɓe.

4.2 Misalin Tsarin Bincike

Nazarin Shari'a: Kimanta Zaɓin Ƙirar Na'urar Ji
Lokacin haɗa na'urar ji kamar RainbowSight cikin tsarin injinan mutum-mutumi, tsarin bincike mai tsari yana da mahimmanci. Yi la'akari da matrix yanke shawara mara lamba mai zuwa:

  1. Binciken Bukatun Aiki: Ayyana bayanan ji da ake buƙata (misali, lamba na binary, taswirar ƙarfi na 2D, lissafin 3D mai zurfi). RainbowSight ya yi fice a lissafin 3D.
  2. Siffar Siffa & Haɗawa: Kimanta lissafin ƙarshen aiki. Shin zai iya ɗaukar na'urar ji mai lanƙwasa? Shin ana buƙatar ji a kowane bangare? RainbowSight yana ba da daidaitawa a nan.
  3. Binciken Ƙarfin Haske: Kimanta yanayin aiki. Shin hasken muhalli zai yi katsalandan? Hasken ciki, sarrafa haske na RainbowSight ƙarfi ne.
  4. Masana'antu & Overhead na Daidaitawa: Kwatanta sarkakiyar ƙirar na'urar ji da hanyar daidaitawa. RainbowSight yana rage daidaita gani amma yana buƙatar daidaitawar launi-zuwa-al'ada.
  5. Hanyar Sarrafa Bayanai: Tsara fitowar na'urar zuwa algorithms na fahimta/sarrafawa na gaba. Tabbatar da jinkirin ƙididdige taswirorin zurfi daga hotunan launi ya cika buƙatun tsarin.

Wannan tsarin yana taimaka wa masu injinan mutum-mutumi su wuce kawai ɗaukar sabon na'urar ji zuwa yadda za a tura shi da dabara inda takamaiman fa'idodinsa—siffar lanƙwasa mai daidaitawa da ƙarfin stereo na hotuna na tushen bakan gizo—suka ba da mafi girman dawowar ƙoƙarin haɗawa.

5. Ra'ayin Masanin Masana'antu

Bari mu yanke ta cikin gabatarwar ilimi mu kimanta tasirin RainbowSight a duniyar gaske da yuwuwar sa.

5.1 Fahimtar Tsaki

RainbowSight ba wani na'urar ji kawai ba ne; yana da ingantaccen hack na injiniyanci wanda ke gefe da kyau ga mummunan gani na stereo na hotuna mai lanƙwasa. Ƙungiyar MIT ta gano cewa neman cikakkiyar, tsarin haske da yawa a cikin ƙananan wurare masu lanƙwasa ya zama yaƙin da aka yi rashin nasara don karɓuwa da yawa. Maganinsu? A shafa hasken cikin bakan gizo kuma a bar taswirar daidaitawa ta warware shi. Wannan bai fi game da ci gaban kimiyyar lissafi ba kuma ya fi game da sake tattara sanannun ka'idoji (stereo na hotuna, sanya launi) don haɓaka ƙirar ƙira da sassaucin ƙira sosai. Haƙiƙanin fa'idar shi ne samun dama.

5.2 Tsarin Ma'ana

Sarkar ma'ana tana da ƙarfi: 1) Sarrafawa mai hankali yana buƙatar amsa ji mai wadata. 2) Amsa mai wadata ta zo daga ji na siffa na 3D mai zurfi. 3) Ji na siffa akan amfani (lanƙwasa) lissafin ƙafa yana da wahalar gani. 4) Maganganun da suka gabata (tsararrun fitilun LED da yawa) suna da ƙarfi kuma suna da wahalar ma'auni/daidaitawa. 5) Ƙirƙira na RainbowSight: Maye gurbin sanya haske mai sarkakiya tare da sanya bakan gizo mai sarkakiya. 6) Sakamakon: Na'urar ji wacce ke da sauƙin gina ta cikin siffofi daban-daban, sauƙin daidaita ta da aminci, don haka mafi yuwuwar amfani da ita a waje da dakin gwaje-gwaje. Kwararar ta juya daga "yadda ake sa kimiyyar lissafi ta yi aiki" zuwa "yadda ake sa tsarin ya zama mai gina."

5.3 Ƙarfi & Kurakurai

Ƙarfi:

  • Democratization na Ƙira: Wannan zai iya zama "Arduino" na ji mai zurfi—rage shingen shiga sosai.
  • 'Yancin Siffar Siffa: Rage sarkakiyar haske daga lanƙwasa saman ya zama mai canza wasa don ƙarshen aiki na al'ada.
  • Yawan Bayanai na Asali: Hanyar tushen kamara tana ɗaukar adadi mai yawa na bayanai a kowane firam, yana ba da kariya don hanyoyin tushen koyo.
Kurakurai & Tambayoyi Budadden:
  • Karkatar Daidaitawar Launi: Yaya ƙarfin taswirar launi-zuwa-al'ada a tsawon lokaci, tare da tsufa elastomer, lalacewar LED, ko canjin yanayin zafi? Wannan yana iya zama ciwon kai na kulawa.
  • Shakku na Bakan Gizo: Shin siffofi biyu daban-daban na saman za su iya haifar da gaurayen launi iri ɗaya? Takardar ta nuna alamar daidaitawa ta warware wannan, amma shakku na ka'ida zai iya iyakance daidaito a ƙarshen lanƙwasa.
  • Toshewar Sarrafawa: Sun sauƙaƙa kayan aikin amma sun canza sarkakiya zuwa daidaitawa da sarrafa hoto na ainihin lokaci. Farashin lissafin fassarar launi na kowane pixel da haɗin al'ada ba ƙaramin abu bane ga tsarin da aka saka.
  • Dogaro da Kayan Aiki: Dukan hanyar ta dogara ne akan takamaiman lulluɓi mai ɗan ƙaramin haske tare da daidaitaccen albedo. Wannan yana iyakance kaddarorin injiniyoyi (misali, dorewa, gogayya) na saman lamba.

5.4 Fahimtoci Masu Aiki

Ga masu bincike da kamfanoni a cikin injinan mutum-mutumi:

  1. Mayar da hankali kan Tarin Daidaitawa: Nasarar hanyar bakan gizo tana rayuwa ko mutuwa ta hanyar daidaitawa. Ku saka hannun jari don haɓaka ingantattun, mai yiwuwa masu gyara kansu ko a kan layi na daidaitawa don rage karkata. Ku duba wallafe-wallafen gani na kwamfuta akan daidaitawar hotuna don ƙarfafawa.
  2. Benchmark Dangane da Madadin Gaskiya—Kwaikwaiyo: Kafin gina RainbowSight na zahiri, ƙungiyoyi yakamata su tambayi idan kwaikwaiyo-zuwa-gaske tare da kamara zurfi na gama gari ko na'urorin ji masu arha, haɗe tare da ƙaƙƙarfan samfurin duniya (kamar yanayin daga DeepMind ko OpenAI), zai iya cimma irin wannan aikin aiki a farashi mai rahusa da sarkakiya.
  3. Bincika Haɗin Ji: Haɗa cikakken lissafin RainbowSight tare da sauƙi, ƙarfin na'urar ji na ƙarfi/torque a gindin yatsa. Haɗin siffa mai zurfi na gida da bayanan ƙarfi na duniya yana da ƙarfi fiye da kowane ɗayan shi kaɗai.
  4. Manufa Ayyukan Farko na Farko: Kada ku yi ƙoƙarin maye gurbin duk ji. Ku tura RainbowSight a cikin aikace-aikacen da takamaiman fa'idar sa ke da mahimmanci: aikace-aikacen da ke buƙatar gano ƙananan sifofi masu sarkakiya ta hanyar taɓawa kawai (misali, tabbatar da haɗawa, sarrafa kayan aikin tiyata, rarraba abubuwan sake amfani da su).

RainbowSight mataki ne mai hikima zuwa ga taɓawa mai inganci mai inganci. Ya kamata filin yanzu ya gwada ƙarfinsa kuma ya sami app ɗin kisa wanda ya tabbatar da kyawunsa.

6. Ayyukan Gaba & Jagorori

Sassauci da fitarwa mai zurfi na RainbowSight sun buɗe hanyoyi masu ban sha'awa da yawa:

  • Ƙarin Sarrafa Injinan Mutum-Mutumi: Ba da damar injinan mutum-mutumi su yi ayyuka masu laushi kamar hanyar kebul, haɗin haɗin gwiwa, ko ƙananan haɗawa inda jin daidaitaccen siffa da daidaitawa ke da mahimmanci.
  • Tiyata Mai Ƙarancin Katsalandan (MIS): Rage girman na'urar don haɗawa akan kayan aikin tiyata na mutum-mutumi don ba wa likitocin tiyata amsa ji na nau'in nama da yanayin halitta, yana rama asarar taɓawa kai tsaye.
  • Prosthetics da Haptics: Haɓaka ƙarin hannayen prosthetic masu hankali waɗanda za su iya ba masu amfani da cikakken bayanin ji game da riƙo da siffar abu, ko ƙirƙirar na'urori masu nuna haptic mai inganci don gaskiyar gaske.
  • Binciken Masana'antu: Yin amfani da injinan mutum-mutumi masu ɗaukar na'urar ji don bincika saman don lahani (fashe-fashe, burrs, daidaiton lulluɓe) a cikin wuraren da aka rufe gani ko ƙarancin haske.
  • Jagoran Bincike - Sake Gina Tushen Koyo: Aikin gaba zai iya amfani da samfuran koyo mai zurfi (misali, Cibiyoyin Sadarwar Convolutional) don tsara hotunan tsarin bakan gizo kai tsaye zuwa lissafin 3D ko ma kaddarorin kayan aiki, mai yiwuwa sauƙaƙa ko wuce tsarin stereo na hotuna na tushen samfur, kama da yadda CycleGAN (Zhu et al., 2017) ya koya don fassara tsakanin yankunan hoto ba tare da misalan haɗin gwiwa ba, samfurin zai iya koyon sarkakiyar taswira daga lalacewar bakan gizo zuwa siffa.
  • Jagoran Bincike - Haɗin Modal Multi-Modal: Haɗa bayanan lissafi masu yawa daga RainbowSight tare da wasu hanyoyin ji, kamar ji na girgiza don rubutu ko ji na zafi don gano kayan aiki, don ƙirƙirar cikakken "ji na ji" suite.

7. Nassoshi

  1. Tippur, M. H., & Adelson, E. H. (2024). RainbowSight: A Family of Generalizable, Curved, Camera-Based Tactile Sensors For Shape Reconstruction. arXiv preprint arXiv:2409.13649.
  2. Yuan, W., Dong, S., & Adelson, E. H. (2017). GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force. Sensors, 17(12), 2762.
  3. Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. Proceedings of the IEEE International Conference on Computer Vision (ICCV).
  4. Kappassov, Z., Corrales, J. A., & Perdereau, V. (2015). Tactile sensing in dexterous robot hands—Review. Robotics and Autonomous Systems, 74, 195-220.
  5. MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). (n.d.). Robotics and Perception Research. Retrieved from https://www.csail.mit.edu
  6. Woodham, R. J. (1980). Photometric method for determining surface orientation from multiple images. Optical Engineering, 19(1), 191139.