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Abstract: We present a simulation capability for micro-scale light-emitting diodes (𝜇LEDs)

that achieves comparable accuracy to CPU-based őnite-difference time-domain simulation but is

more than 107 times faster. Our approach is based on the Fourier modal method (FMM)Ðwhich,

as we demonstrate, is well suited to modeling thousands of incoherent sourcesÐwith extensions

that allow rapid convergence for 𝜇LED structures that are challenging to model with standard

approaches. The speed of our method makes the inverse design of 𝜇LEDs tractable, which

we demonstrate by designing a metasurface-enhanced 𝜇LED that doubles the light extraction

efficiency of an unoptimized device.

1. Introduction

Micro-scale light-emitting diodes (𝜇LEDs) with lateral dimensions near 1 𝜇m are of interest

for a variety of applications including augmented reality displays [1, 2]. In this context, high

light extraction efficiency (LEE) is essential due to the requirement for high brightness (e.g.

for outdoor usage) and the need to operate for extended periods on battery power. It would

be desirable to apply methods such as inverse design to obtain 𝜇LED designs with higher

performance; inverse design is a powerful technique that automatically discovers the topology

and shapes of designs that minimize some objective function [3ś5], and would be suitable to

the creation of metasurfaces that enhance 𝜇LED LEE. However, light generated in the 𝜇LED is

spatially incoherent; spatially incoherent sources (arising in e.g. spontaneous emission [6ś8] and

thermal emission [9,10]) are extremely expensive to model by standard approaches (requiring

many independent simulations), making inverse design of structures including incoherent sources

computationally intractable. Consequently, previous works on modeling and optimization of

𝜇LEDs have focused on symmetric or low-dimensional cases, or used a widely-spaced dipoles to

approximate a planar active region [11,12], leaving the challenge of general 3D 𝜇LED inverse

design unaddressed.

In this work, we present a new simulation capability based on the Fourier modal method (FMM)

which overcomes these limitations. For the 𝜇LED, our method gives results that are in excellent

agreement with őnite-difference time-domain (FDTD) simulations while being more than 107

times faster (Sec. 4). This makes it practical for use in an inverse design setting, which we

demonstrate by designing metasurface-enhanced 𝜇LEDs that signiőcantly improve LEE (Sec. 6).

The speed of our method also enables calculation of quantities such as high-resolution spatial

maps of LEE, allowing new insights into the physics of 𝜇LED devices.

Related to our work, novel factorization methods for multi-channel inverse design [13, 14] and

a trace formulation of photonic inverse design [15] have recently been introduced, which have

lower computational cost compared to conventional inverse design formulations. Our work shows

thatÐfor problems such as the 𝜇LEDÐwith an appropriate choice of the simulation algorithm,

the standard formulation may be sufficient. In particular, the FMM has several characteristics

that enable efficient modeling of many incoherent sources. The FMM treats őelds in periodic

stratiőed media in a truncated Fourier basis, which has the potential to represent őelds accurately

with relatively few terms. As in other methods, with the FMM one solves a linear system to

obtain the őelds generated by a source; this system has dimension given by the size of the basis,

which for FMM is related only to the details of the structure in two dimensions, as the third
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dimension is handled analytically. The resulting linear system can be relatively small, enabling

direct solution methods to be employed. Finally, while constructing the linear system involves

eigendecompositions and is expensive, the results of these operations can often be reused e.g. in

an optimization setting where many layer proőles may be unchanged between iterations.

Despite these potential advantages, there are challenges that have discouraged the use of the

FMM for problems such as the 𝜇LED. For example, the original and common FMM formulation

exhibits poor convergence in structures containing metals [16]. In addition, FMM naturally treats

periodic structures and sources; while 𝜇LEDs are generally formed in periodic arrays, treatment

of a source as periodic gives rise to nonphysical interference effects [17]. We address these

issues with a vector formulation of the FMMÐincluding an improved method for automatically

computing vector őeldsÐand Brillouin zone integration [17ś19], which dramatically improve

convergence (Sec. 5) and allow modeling of localized dipoles in a periodic 𝜇LED array.

Our implementation of the FMM is FMMAX, which is based on Jax [20] and joins several recent

codes that support automatic differentiation [21ś24], enabling the gradient calculation needed

for inverse design. Our code is distinguished by a ŕexible low-level programming interface

which admits uncommon use cases such as the 𝜇LED simulations carried out here, and is freely

available at github.com/facebookresearch/fmmax.

2. Method

Throughout this section, we discuss extensions of the basic FMM needed to enable 𝜇LED

simulation and inverse design. For a full description of the FMM, we refer the reader to [25]

and [26], which our implementation closely follows.

2.1. Vector FMM formulations

It has long been recognized that the original FMM formulation (referred to as FFT, as in [25])

converges well only when electric őelds are tangent to material interfaces [16]; this was improved

by vector FMM formulations, which introduce a local coordinate system with unit vectors that are

tangent and normal to the boundaries of features. Vector formulations allow orientation-dependent

Fourier factorizations of permittivity to be used for tangent and normal components of the electric

displacement őeld, which is the essential change of the vector FMM methods from the original

formulation [27]. In an inverse design setting, the vector őelds must be automatically generated

from the evolving geometry. Various schemes have been developed based on interpolation [28]

and functional minimization [25]; we adopt the latter due to its applicability to continuously

varying permittivity, as is encountered during the course of optimization.

As in [25], the vector őeld t =
[

𝑡𝑥 , 𝑡𝑦
]⊺

for a permittivity array 𝜀 is obtained by minimizing

a loss function L. High-quality vector őelds should be smoothly varying and normal to the

permittivity gradient, i.e. tangent to the interfaces in the structure. This is achieved using

L(t, 𝜀) =
∑︁
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, (1)

where the sum is over all the elements in t. The őrst term is minimized when t is correctly oriented,

while the remaining terms are minimized when t varies slowly. The resulting optimization

problem,

t = argmin
t
★

s.t. |t★ |≤1

L(t★, 𝜀), (2)

can be solved by standard gradient-based methods.

The choice of initial t
★ is consequential. In a novel method termed Jones direct, we compute

an initial real-valued vector őeld (even for complex 𝜀) and convert to a complex Jones őeld using

https://github.com/facebookresearch/fmmax


the method of [29]. The őnal complex-valued t is obtained by directly optimizing this Jones

őeld, and advantageously lacks both discontinuities and zeros.

A real-valued t can be obtained by avoiding the Jones conversion and directly optimizing a real

t
★; this will lack discontinuities but include zeros, and is equivalent to the Pol method of [25].

The őeld can be normalized to have magnitude 1 everywhere (the Normal method of [25]) or it

can be converted to a Jones őeld as a post-processing step (the Jones method of [25]). In general,

the Normal method will yield őelds having discontinuities, while the Jones method will yield

őelds that lack discontinuities and zeros, but vary more rapidly than those obtained by the Jones

direct method. Thus, the Jones direct scheme has favorable characteristics for generation of a

local coordinate system represented in a Fourier basis.

Example vector őelds for these methods are in Appendix A. Consistent with the theoretical

beneőts discussed above, we observe best convergence for the FMM with the Jones direct

formulation (Appendix B) and use the method throughout this work.

2.2. Brillouin zone integration for aperiodic sources

Sources in periodic structures can be modeled in the FMM by expanding the source spatial

proőle in terms of the layer eigenmodes [26]. However, in this approach both the sources and

the structure are periodic, which is not the case in a real 𝜇LED and can give rise to unphysical

interference effects.

In principle, larger supercells including multiple 𝜇LEDs could be modeled, but due to

the unfavorable scaling of the FMM algorithm this may be prohibitive. Absorbing boundary

conditions could also be introduced, as used previously in extensions of the FMM to accommodate

aperiodic structures [30, 31]. A further alternativeÐthe approach adopted hereÐis the Brillouin

zone (BZ) integration method of [17ś19], in which the electric őeld from an isolated source in a

periodic structure is found by,

𝐸 (𝑟) =
1

𝐴𝐵𝑍

∫

𝐵𝑍

𝐸𝑘𝐵 (𝑟)𝑑𝑘𝐵, (3)

where 𝐸𝑘𝐵 is the őeld with Bloch-periodic boundary conditions for wavevector 𝑘𝐵, and 𝐴𝐵𝑍 is

the BZ area. The calculation of each 𝐸𝑘𝐵 requires a simulation of a single unit cell, and thus the

problem of modeling a large supercell is transformed into one of several smaller simulations.

Throughout this work, we approximate integrals over the Brillouin zone by averaging over a

regular 𝑘𝐵 grid. When the grid has shape 𝑀 × 𝑀 , we refer to the case as 𝑀 × 𝑀 BZ integration;

when no BZ integration is performed, we refer to this as the periodic dipole approximation (PDA).

2.3. Calculation of light extraction efficiency

For the 𝜇LED modeled here, we are primarily concerned with the total LEE and the power

radiated by the dipole. For a given wavelength, the LEE is obtained by,

𝐿𝐸𝐸 =

∑︁

𝑟 , 𝑝,𝑘𝐵

𝑤𝑝𝑃
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
𝑟 , 𝑝,𝑘𝐵

/

∑︁

𝑟 , 𝑝,𝑘𝐵

𝑤𝑝𝑃
𝑒𝑚𝑖𝑡𝑡𝑒𝑑
𝑟 , 𝑝,𝑘𝐵

(4)

Here, 𝑃𝑒𝑚𝑖𝑡𝑡𝑒𝑑
𝑟 , 𝑝,𝑘𝐵

and 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
𝑟 , 𝑝,𝑘𝐵

are the power emitted by a dipole, and power emitted by the dipole

which is extracted from the 𝜇LED. The powers are measured with planar monitors, obtained by

summing over the powers in all the Fourier orders as described in [25], and are indexed by 𝑟,

𝑝, and 𝑘𝐵, corresponding to the dipole position, dipole orientation, and BZ point, respectively.

We use a dipole-orientation-dependent weight 𝑤𝑝, with values of 1 for the 𝑥- and 𝑦-oriented

dipoles and 0.1 for the 𝑧-oriented dipoles. These generally have lower extraction efficiency and

can be suppressed in material systems such as AlInGaP by appropriately straining the quantum

wells [32].



3. 𝜇LED structure and optimization problem

We now describe the 𝜇LED geometry and corresponding optimization problem used throughout

the rest of our analysis. We consider an array of simpliőed cylindrical 𝜇LEDs with a 1.4 𝜇m pitch,

which is illustrated in Fig. 1. The semiconductor region has a diameter of 1 𝜇m, the conducting

oxide has a diameter of 0.8 𝜇m, and the passivation sidewall has a thickness of 0.1 𝜇m. Other

layer thicknesses are optimizable parameters speciőed elsewhere. A spatial resolution of 10 nm

is used for all layers. Refractive indices of the materials are as follows: semiconductor, 3.0;

conducting oxide, 1.9 + 0.005𝑖; passivation, 1.5; and metal, 0.2 + 3.3𝑖. Values are chosen to be

representative of AlInGaP, indium-tin oxide, silicon oxide, and gold, respectively.

0.5 0.0 0.5
x ( m)

0.0

0.5

1.0

z (
m)

0.5 0.0 0.5
x ( m)

0.5

0.0

0.5
y (

m)
air
metasurface
semiconductor
conducting oxide
passivation
metal

Fig. 1. Side and top view of the 𝜇LED unit cell analyzed throughout this work. A

high index semiconductor (𝑛 = 3.0) cylinder is embedded within a metallic substrate

(𝑛 = 0.2 + 3.3𝑖) and separated by a thin passivation layer (𝑛 = 1.5) and transparent

conducting oxide (𝑛 = 1.9 + 0.005𝑖). The metasurface łdesign regionž of the 𝜇LED

unit cell resides on top of the semiconductor cavity and emits into air. The material of

the metasurface is composed of a refractive index that is linearly interpolated between

the index of the semiconductor and air. The metasurface itself is parameterized by a

2D grid of łpixelsž [33] in 𝑥/𝑦 and projected into the 𝑧-direction using a thickness

chosen by the optimizer. Dipoles within the 𝜇LED are located in a planar source

region embedded within the semiconductor layer, which is free to move as the optimizer

dictates.

We model dipoles in a plane within the semiconductor material, and consider 𝑥-, 𝑦-, and

𝑧-oriented dipoles on a 20 nm grid (5847 total dipoles). The spatial proőle of the dipoles is

Gaussian with a 60 nm full-width at half-maximum. Power emitted by each dipole is measured

using planar monitors positioned 50 nm from the dipole plane. We model a single plane,

corresponding e.g. to a single quantum well active region, but note that it would be possible to

model multi-quantum-well active region with no additional eigendecompositions, and therefore

relatively cheaply.

We turn now to the 𝜇LED optimization problem. In this paper, we exercise unconstrained

optimization, as our primary aim is to demonstrate the functioning of the simulator and inverse

design pipeline, rather than to obtain designs suitable for manufacture, or to form estimates of

the potential performance of metasurface-enhanced 𝜇LEDs. We use a monochromatic objective

L(𝑝) = 1 − 𝐿𝐸𝐸 (𝑝) for a 630 nm emission wavelength. Here, 𝑝 represents the optimizable

parameters, including layer thicknesses and the metasurface density 𝜌. The density is a two-

dimensional array with values in the range [0, 1] from which the permittivity at each point is

computed by interpolation between the permittivity of air and of semiconductor using the method

of [34].

Although one could directly optimize the elements of the density array 𝜌, this can produce
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Fig. 2. Cross sections of the steady-state electric őeld magnitude for dipoles at

(𝑥, 𝑦) = (0, 0) and (0, 0.2) computed by FMM and FDTD. The 𝑥𝑧 and 𝑦𝑧 are taken

through the center of the 𝜇LED, while the 𝑥𝑦 section is taken at the semiconductor/air

interface. The methods show strong agreement at all slices and for both dipole positions,

as demonstrated by the consistent representation of the complicated modal patterns.

designs with very őne features that would not be practical to manufacture. Therefore, we choose

to instead optimize a latent density 𝜌̃ also in the range [0, 1], from which 𝜌 is obtained by,

𝜌 =
1

2
(1 + tanh (𝛽 (2𝜌̃ − 1) ⊛ 𝑘)) (5)

where 𝑘 is a Gaussian kernel with a full-width at half-maximum of 40 nm and 𝛽 = 2. This

expression is similar to the transforms commonly used in density-based topology optimization [35]

and help ensure that 𝜌 lacks features which are too small by encouraging an implicit lengthscale.

Futhermore, this approach helps regularlize the optimization problem, which is solved using the

L-BFGS-B algorithm [36].

4. Field calculation and validation

To establish the validity of our method, we őrst make a direct comparison of the steady-state

őelds computed by Meep [37], a mature FDTD solver, to those computed by FMM. We consider

a simple 𝜇LED lacking a metasurface, with semiconductor and conducting oxide thicknesses

of 1.0 𝜇m and 0.1 𝜇m, respectively. Dipoles emitting at 630 nm are centered vertically in the

semiconductor and positioned (with units of 𝜇m) at (𝑥, 𝑦) = (0, 0) and (0, 0.2), both oriented in

the 𝑥-direction.



Figure 2 shows cross sections of the electric őeld magnitude computed by the two methods.

The őeld structure for both dipole locations computed by FMM and FDTD are in excellent

agreement; in particular, the nodal lines found by the two methods are nearly indistinguishable.

Our FMM calculation uses the PDA with the Jones direct formulation and 𝑁 = 2000.

The FDTD calculation uses a spatial resolution of 200 voxels / 𝜇m, periodic boundary

conditions in the 𝑥- and 𝑦-directions, and perfectly electric conductor (PEC) boundary conditions

in the z-direction. To mitigate backreŕections from the upper z-boundary, we used a 2 𝜇m

thick, adiabatic, conductive absorber layer above the 𝜇LED. Using a nonlinear optimization

algorithm [38], we őt a Lorentz-drude material model to the desired complex refractive index

values at 𝜆 = 630 nm to ensure simulation stability [39]. The FDTD simulation using a broadband

Gaussian pulse centered at 630 nm and terminated the simulation after the őelds were sufficiently

decayed. Just like the FMM solver, the spatial proőle of the FDTD source was a normalized

Gaussian with a FWHM of 60 nm. The steady-state őelds for the 630 nm wavelength were

recorded using rolling discrete-time Fourier transform monitors at the speciőed cross sections.

5. Solver convergence and performance

Next, we study the convergence and performance of the FMM in the context of our 𝜇LED

simulations and compare the results to FDTD. We note that the numerical accuracy of each

algorithm is fundamentally dictated by the underlying discretization resolution; for FDTD, this

corresponds to the actual spatial resolution of the grid, or the total number of simulation voxels,

whereas with FMM this refers to the spatial-frequency resolution, or the total number of Fourier

orders. To quantify the relative convergence characteristics of both algorithms, we simulated the

𝜇LED structure and dipole conőguration of Sec. 4 with multiple resolutions.

First, we examine the importance of the FMM formulation itself. Fig. 3 shows the LEE for the

x-oriented dipoles at (𝑥, 𝑦) = (0, 0) and (0, 0.2) as a function of the Fourier orders 𝑁 and for the

Jones direct and FFT formulations. For the Jones direct formulation, the LEE for both dipoles

quickly converges; the values with 𝑁 = 4800 are 36.7% and 30.4% respectively, but with only

𝑁 = 400 the values are 37.4% and 29.4%, in excellent agreement with the converged results. By

contrast, the FFT formulation exhibits very poor convergence; as 𝑁 increases the values trend in

the direction of the Jones direct results, but they exhibit substantial ŕuctuation and remain far

from the converged result even with 𝑁 = 4800.

We now directly compare the convergence of FMM and FDTD. Fig. 3 also shows the

convergence of LEE for both dipole positions calculated by FDTD with varying spatial resolution.

With a resolution of 200 voxels / 𝜇m (Δx=5 nm), we obtain values of 39.2% and 31.7%, in

good agreement with the converged Jones direct result. Such a high spatial resolution for FDTD

is expected due to the high-contrast metals within the 𝜇LED model, although the application

of subpixel-smoothing algorithms or other conformal meshing approaches compatible with

dispersive media should accelerate the convergence [40]. In combination with the őeld proőles in

Fig. 2, this shows that the vector FMM can be used for modeling and LEE calculation of 𝜇LEDs,

with results comparable to high-resolution FDTD.

Despite the similarity in results between FMM and FDTD, there are major differences in the

performance and computational burden of the two algorithms. Fig. 4 shows the elapsed time

for the FMM and FDTD simulations in Fig. 3 as a function of Fourier order and resolution

respectively. All calculations were performed using 10 cores of a 2.20GHz Intel® Xeon® CPU

E5-2698 v4 with 512 GB of RAM and two NUMA nodes. Although FMMAX supports GPU

acceleration, this was not used to allow a direct comparison. The FMM results are shown for the

case where three incoherent dipoles are modeled, and where all ∼6000 dipoles are modeled; the

results show the negligible incremental cost of simulating additional dipoles.

The FDTD elapsed times are shown for centered and offset dipoles; the centered-dipole

simulation used odd 𝑥-symmetry and even 𝑦-symmetry to reduce the computational burden,
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Fig. 3. Convergence of the light extraction efficiency for FMM and FDTD as a function

of Fourier order and spatial resolution respectively. Results are given for both the

centered and offset 𝑥-oriented dipole. While the Jones direct FMM formulation of

FMM converges for 𝑁 ≥ 400, the FFT formulation fails to converge; the calculated

efficiency trends in the direction of the Jones direct result, but does not reach agreement

even for 𝑁 = 4800. FDTD requires a resolution of 200 voxels / 𝜇m (Δx=5 nm) to reach

suitable convergence, largely due to the high-contrast metals within the 𝜇LED model.

while the offset dipole considered the full simulation volume and is representative of the general

case. Considering this offset dipole, there is approximately a 3 × 103 speedup when comparing

the 200 voxels / 𝜇m FDTD results (the coarsest resolution that yields converged results) to the

𝑁 = 800 Fourier-term results (the lowest 𝑁 we used in the inverse design setting).

Practically speaking, the speedup is even more signiőcant; if FDTD simulations were carried

out for the ∼6000 dipoles considered in this work, we project that CPU time would be ∼2 × 107

times greater than for the equivalent calculation by FMM. If simulations considering multiple

wavelengths were carried out, the advantage would be reduced; FDTD automatically handles

multiple wavelengths within a single simulation, while with the FMM each wavelength requires

an independent simulation. However, for the 𝜇LED we have found that 𝑂 (10) wavelengths are

sufficient, and in any case these simulations can easily be distributed across many machines (the

task is embarrassingly parallel). This makes FMM a strong choice for problems such as the

𝜇LED.

We note a few other important observations regarding the convergence trends of each method.

For low 𝑁 , for example, the vector őeld calculation contributes signiőcantly to the total time of

the FMM method, causing the non-polynomial scaling seen in Fig. 4. The FDTD elapsed times

also exhibit some deviation from polynomial behavior and a crossover at 100 / 𝜇m resolution.

Meep requires the user to properly choose a hardware conőguration (e.g. the proper number

of processes to launch) to maximize the timestepping rate [41]. Choosing these parameters

correctly is highly dependent on the underlying simulation resolution, and most likely accounts

for the aforementioned crossover point. The 𝜇LED structure may also be more or less resonant

for dipoles at different positions in a manner that depends on resolution; for the FDTD algorithm,

this can also cause simulation times to vary.

While not clear from the data in Fig. 4, the FMM solver also offers advantages when used

within an optimization pipeline where many solves are performed sequentially. Speciőcally, the

eigendecomposition for layers whose cross-sections do not change can be cached and reused.

With Jax, this is optimization is easily done by jit-ing (just-in-time compiling) the simulation and
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Fig. 4. Comparison of elapsed time for FMM and FDTD LEE calculations. The results

indicate an approximate ∼3 × 103 times speedup when comparing the 200 voxels / 𝜇m

FDTD simulation to the 𝑁 = 800 Fourier term FMM simulation (resolutions where both

algorithms are converged). Notably, the FDTD results correspond to a single dipole

simulation. The expected computational cost for additional dipoles scales linearly with

the number of dipoles. This is in direct contrast with the FMM method shown here,

where the marginal cost of an additional ∼6000 dipoles is negligible. Therefore, the

projected speedup for a full 𝜇LED simulation is ∼2 × 107.
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Fig. 5. Light extraction efficiency for various BZ integration schemes computed with

the Jones direct FMM formulation and 𝑁 = 2000. Values are for individual 𝑥-oriented

dipoles and a full calculation including all 𝑥-, 𝑦-, and 𝑧-oriented dipoles in the basic

𝜇LED. Each łschemež is deőned the regular grid of wavevectors in the őrst BZ used

to approximate a BZ integral, such that 3 × 3 corresponds to nine evenly distributed

points (three samples along 𝑘𝑥 and three samples along 𝑘𝑦). Importantly, for the 𝜇LED

problem, the LEE appears to converge with a relatively small number of points.

specifying that eigendecompositions be carried out at compile time. For the 𝜇LED problem, the

savings are substantialÐwhile eigendecomposition for three patterned layers is needed at the

őrst step, at subsequent steps only one eigendecomposition (for the metasurface) is needed. For

the 𝑁 = 800 case on our Xeon® system, this results in a step time of 49 seconds for the second

and subsequent steps, compared to 175 seconds for the őrst step.

Finally, to study the effect of BZ integration, we calculated LEE using the PDA and BZ

integration schemes up to 6 × 6, using the Jones direct formulation and 𝑁 = 2000. The results

are in Fig. 5; values are shown for the two 𝑥-oriented dipoles and the total LEE considering all

∼6000 dipoles in the active region. The quality of the PDA apparently depends on the dipole

position: for the dipole at (0, 0), going to 2× 2 BZ integration and beyond only slightly increases



unoptimized thicknesses thicknesses and metasurface

metasurface ś ś 0.102 𝜇m

semiconductor height 1.000 𝜇m 0.945 𝜇m 0.966 𝜇m

source offset 0.500 𝜇m 0.531 𝜇m 0.507 𝜇m

conducting oxide 0.100 𝜇m 0.054 𝜇m 0.102 𝜇m

Table 1. Thicknesses for the unoptimized and optimized 𝜇LEDs.

0.5 m

Fig. 6. The optimized metasurface density 𝜌; light and dark colors correspond to

𝜌 = 0 (air) and 𝜌 = 1 (semiconductor), respectively. The dashed line indicates the

passivation/semiconductor interface.

the computed LEE value. By contrast, the dipole at (0, 0.2) has a dramatic increase in the LEE

when BZ integration is used, and a sizeable increase is also seen in the all-dipole case. This

indicates that avoiding the PDA is critical in the calculation of the LEE for a 𝜇LED.

Motivated by these results, for the remainder of this work we make use of two simulation

conőgurations. In the inverse design setting, to balance accuracy against speed, we use the Jones

direct method with 𝑁 = 800 and 2×2 BZ integration. For validation, we use 𝑁 = 2000, also with

Jones direct and 2×2 BZ integration.

6. Optimization results

To exercise our inverse design pipeline and examine the potential of metasurface-enhanced

𝜇LEDs, we consider three cases: the őrst is the initial, unoptimized 𝜇LED with structure

discussed earlier, i.e. with no metasurface, conducting oxide thickness of 0.1 𝜇m, semiconductor

thickness of 1 𝜇m, and dipoles are located 0.5 𝜇m above the oxide. In the second, the őlm

thicknesses are optimized, using the given values as the initial solution. In the third case, both

the őlm thicknesses and the metasurface density are optimizable. Here, the initial semiconductor

thickness is reduced to 0.95 𝜇m and the initial metasurface thickness is 0.1 𝜇m, resulting in a

structure whose optical thickness approximately matches that of the unoptimized 𝜇LED. The

latent density is uniformly initialized with a value of 0.5.

The thickness-optimized 𝜇LED optimization proceeded for 17 iterations before the optimizer

converged, reaching an LEE of 40.1% at 630 nm, compared to 28.4% for the initial 𝜇LED. The

optimized őlm thicknesses are given in Table 1. Changes to thicknesses from the initial values

are relatively small, consistent with a loss landscape having many local minima, as frequently

encountered in thin őlm optimization problems. The 𝜇LED with optimized őlm thicknesses

and metasurface proceeded for 69 iterations, ultimately reaching an LEE of 56.2%. The őlm

thicknesses are given in Table 1, and the metasurface density is shown in Fig. 6.

To understand the mechanism for LEE improvement in the 𝜇LEDs obtained by optimization,

we computed high-resolution maps of the LEE and emitted power for the three 𝜇LED structures.
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Fig. 7. Spatial maps of light extraction efficiency and emitted power for the initial,

thickness-optimized, and metasurface-enhanced 𝜇LED. Values are for 630 nm wave-

length, averaged over dipole orientations, and for 𝑁=2000 with 2×2 BZ integration.
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Fig. 8. Light extraction efficiency vs wavelength for the initial, unoptimized 𝜇LED;

the 𝜇LED with optimized őlm thicknesses; and the 𝜇LED with optimized thicknesses

and a metasurface.

These are shown in Fig. 7. As noted, our calculation considers dipoles at ∼2000 locations in a

plane; each pixel in a map corresponds to a single physical dipole location, with value found by

appropriately combining those for the three dipole orientations at the location. It is evident that

the large increase in LEE for the optimized 𝜇LEDs is not simply due to a uniform increase in

the LEE, but rather a nonuniform increase together with an enhancement in the dipole power

in regions where the LEE is high. We can also observe sharp features in the LEE and emitted

power. This suggests that simulations with few dipoles on a coarse grid may yield poor estimates

of the total LEE.

Finally, Fig. 8 shows the wavelength-dependent LEE for the three cases, and illustrates the

strong enhancement of LEE at the 630 nm target wavelength. Away from the target, both optimized

𝜇LEDs exhibit a signiőcant drop in LEE, reaching values comparable to the unoptimized LED

with less than 5 nm of wavelength shift. This suggests that a broadband objective will be required

in order to obtain 𝜇LED designs which do not have strong wavelength dependence to LEE.

We emphasize that the 𝜇LEDs discussed above are merely examples of designs that can be



found through optimization, and we have seen many other designs with different metasurface

densities and associated maps of LEE and emitted power. In practice, an objective should

be crafted which is minimized for devices having the actual characteristics needed for 𝜇LED

applications.

7. Conclusion

We have shown that the FMM can be used to model 𝜇LED structures with accuracy comparable

to high-resolution FDTD, while achieving a speedup greater than 107 compared to CPU-based

FDTD in situations where a large number of incoherent dipoles is considered. This result is

enabled by the inherent characteristics of the FMM, vector FMM formulations that dramatically

improve convergence compared to the basic FMM scheme, and BZ integration to model localized

sources. These features are available in FMMAX, a Jax-based implementation of the FMM which

we are open-sourcing alongside this work.

We used FMMAX to optimize several 𝜇LED designs, and showed that a metasurface-enhanced

𝜇LED can increase LEE by 98% over an unoptimized design, and by 38% over a 𝜇LED with

optimized őlm thicknesses but no metasurface. This result indicates that metasurfaces are a

promising technology to improve 𝜇LED performance as required for applications such as AR

displays. Next steps could include consideration of 𝜇LED structures that are more realistic, use

of optimization objectives that better target the actual requirements of 𝜇LEDs in AR applications

(e.g. which maximize directional emission), the incorporation of manufacturability constraints in

the inverse design scheme, and alternate initialization for 𝜇LED őlm thicknesses to obtain better

local optima. It would also be interesting to study the new Jones direct FMM formulation across

a wider of structures.

Finally, our method could be applied to a range of problems where spatially incoherent

emission is considered, to problems where localized sources interact with a periodic structure, or

to problems where FMM is more typically employed, such as modeling of gratings or photonic

crystals.



Pol Jones Jones direct

Fig. 9. Automatically-generated vector őelds for the metasurface layer in Fig. 6. Pol

yields a real-valued vector őeld tangent to material interfaces. Jones yields a complex

Jones vector őeld that is linear and tangent at interfaces, becoming circular away from

interfaces. Jones direct yields a őeld that is similar to JonesÐbut critically, does not

become circular between parallel interfaces, and is therefore smoother. The depicted

vectors are sampled from an underlying, higher-resolution vector őeld.

Appendix A: Vector field examples

Vector őelds obtained for the metasurface layer in Fig. 6 and the Pol, Jones, and Jones direct

methods are shown in Fig. 9. The metasurface exhibits approximate four-fold rotational symmetry,

and so we show one quadrant to make the details of vector őelds more visible.

The Pol őeld is obtained by solving Eq. (2) starting with a real-valued t
★; the result is a

real-valued vector őeld that at high-contrast interfaces is large and tangent to the interfaces. Zeros

are located between parallel interfaces, e.g. at the top left, bottom left, and bottom right of the

quadrant.

The Jones őeld is obtained by converting the Pol őeld into a complex Jones vector őeld as

in [25]. Where the Pol őeld has magnitude 1, the Jones őeld corresponds to a linear polarization

aligned with material interfaces. At zeros of the Pol őeld, the Jones őeld corresponds to a circular

polarization.

The Jones direct őeld is obtained by solving Eq. (2) starting with a complex-valued t
★. To

obtain the complex-valued t
★, we simply take the real-valued initial őeld and convert to a complex

Jones vector őeld by the aforementioned procedure. The resulting Jones vector őeld again

corresponds to a tangent linear polarization at high-contrast interfaces, and circular at certain

locations (e.g. the bottom left of the quadrant), but which remains linear at some locations where

the Jones method produces a circular polarization (e.g. top left or bottom right of the quadrant).

Thus, the Jones direct őeld is (in some sense) smoother, and may be represented with fewer terms

in a Fourier expansionÐleading to improved convergence.

There are a few other differences between the Jones and Jones direct őelds, e.g. locations

where the Jones őeld is fully linear and Jones direct is merely elliptical. The őeld obtained

by each of these methods can in principle be őne-tuned by adding hyperparameters to Eq. (1)

which scale the smoothness and alignment terms. In future work, it would be interesting to study

convergence in the context of this hyperparameter space and with a wider range of structures.

Appendix B: Comparison of FMM formulations

FMMAX implements several FMM formulations. These exhibit virtually identical convergence for

the basic 𝜇LED structure of Fig. 1. However, for more complex 𝜇LEDs that include metasurfaces
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Fig. 10. Light extraction efficiency as a function of Fourier orders 𝑁 for three separate

metasurface-enhanced 𝜇LED designs. Each design was obtained by solving the inverse

design problem of Sec. 3 using the Pol, Jones, and Jones direct formulations during the

course of optimization. We then evaluated each design with various 𝑁 and the three

formulations. Overőtting to 𝑁 = 800 is seen in all cases, but the results converge as 𝑁

increases. Jones direct exhibits the best convergence of the three formulations.

this may not be expected. Further, in an inverse design setting one may encounter łoverőttingž

where an optimized design performs best when evaluated with simulation settings (i.e. number

of Fourier orders, FMM formulation, and BZ integration scheme) used during the optimization

procedure. This makes it challenging to identify a preferred formulation.

Thus, to select the formulation best suited for 𝜇LED design, we solved the inverse design

problem from Sec. 3 with the Pol, Jones, and Jones direct methods (with 𝑁 = 800), obtaining three

separate designs. We then evaluated the total LEE of each design using the three formulations

and Fourier orders up to 𝑁 = 4800. The results are shown in Fig. 10.

The designs achieve similar performance and all show some degree of overőtting, where the

simulation settings used for optimization yield a LEE higher than the converged result. However,

increasing from 𝑁 = 800 to 𝑁 = 2000 (our validation setting, discussed in Sec. 5) is sufficient

to obtain converged results. Of the three formulations, Pol converges least well, and exhibits

some oscillation in the total LEE with an amplitude of ∼5%. Jones and Jones direct are quite

similar, with Jones direct being slightly better on all three designs and avoiding the overőtting on

the Pol-optimized design. The results support the selection of Jones direct and 𝑁 = 2000 for

validation, although a more thorough study of convergence for a wider range of structures would

be valuable.
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