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Abstract: We present a simulation capability for micro-scale light-emitting diodes (4LEDs)
that achieves comparable accuracy to CPU-based finite-difference time-domain simulation but is
more than 107 times faster. Our approach is based on the Fourier modal method (FMM)—which,
as we demonstrate, is well suited to modeling thousands of incoherent sources—with extensions
that allow rapid convergence for uLLED structures that are challenging to model with standard
approaches. The speed of our method makes the inverse design of uLEDs tractable, which
we demonstrate by designing a metasurface-enhanced uLED that doubles the light extraction
efficiency of an unoptimized device.

1. Introduction

Micro-scale light-emitting diodes (uLEDs) with lateral dimensions near 1 ym are of interest
for a variety of applications including augmented reality displays [1,2]. In this context, high
light extraction efficiency (LEE) is essential due to the requirement for high brightness (e.g.
for outdoor usage) and the need to operate for extended periods on battery power. It would
be desirable to apply methods such as inverse design to obtain uLED designs with higher
performance; inverse design is a powerful technique that automatically discovers the topology
and shapes of designs that minimize some objective function [3-5], and would be suitable to
the creation of metasurfaces that enhance uLLED LEE. However, light generated in the uLED is
spatially incoherent; spatially incoherent sources (arising in e.g. spontaneous emission [6—8] and
thermal emission [9, 10]) are extremely expensive to model by standard approaches (requiring
many independent simulations), making inverse design of structures including incoherent sources
computationally intractable. Consequently, previous works on modeling and optimization of
HLEDs have focused on symmetric or low-dimensional cases, or used a widely-spaced dipoles to
approximate a planar active region [11, 12], leaving the challenge of general 3D uLED inverse
design unaddressed.

In this work, we present a new simulation capability based on the Fourier modal method (FMM)
which overcomes these limitations. For the uLED, our method gives results that are in excellent
agreement with finite-difference time-domain (FDTD) simulations while being more than 107
times faster (Sec. 4). This makes it practical for use in an inverse design setting, which we
demonstrate by designing metasurface-enhanced uLLEDs that significantly improve LEE (Sec. 6).
The speed of our method also enables calculation of quantities such as high-resolution spatial
maps of LEE, allowing new insights into the physics of uLLED devices.

Related to our work, novel factorization methods for multi-channel inverse design [13, 14] and
a trace formulation of photonic inverse design [15] have recently been introduced, which have
lower computational cost compared to conventional inverse design formulations. Our work shows
that—for problems such as the uLED—with an appropriate choice of the simulation algorithm,
the standard formulation may be sufficient. In particular, the FMM has several characteristics
that enable efficient modeling of many incoherent sources. The FMM treats fields in periodic
stratified media in a truncated Fourier basis, which has the potential to represent fields accurately
with relatively few terms. As in other methods, with the FMM one solves a linear system to
obtain the fields generated by a source; this system has dimension given by the size of the basis,
which for FMM is related only to the details of the structure in two dimensions, as the third



dimension is handled analytically. The resulting linear system can be relatively small, enabling
direct solution methods to be employed. Finally, while constructing the linear system involves
eigendecompositions and is expensive, the results of these operations can often be reused e.g. in
an optimization setting where many layer profiles may be unchanged between iterations.

Despite these potential advantages, there are challenges that have discouraged the use of the
FMM for problems such as the uLED. For example, the original and common FMM formulation
exhibits poor convergence in structures containing metals [16]. In addition, FMM naturally treats
periodic structures and sources; while uLLEDs are generally formed in periodic arrays, treatment
of a source as periodic gives rise to nonphysical interference effects [17]. We address these
issues with a vector formulation of the FMM—including an improved method for automatically
computing vector fields—and Brillouin zone integration [17-19], which dramatically improve
convergence (Sec. 5) and allow modeling of localized dipoles in a periodic uLED array.

Our implementation of the FMM is FMMAX, which is based on Jax [20] and joins several recent
codes that support automatic differentiation [21-24], enabling the gradient calculation needed
for inverse design. Our code is distinguished by a flexible low-level programming interface
which admits uncommon use cases such as the uLLED simulations carried out here, and is freely
available at github.com/facebookresearch/fmmax.

2. Method

Throughout this section, we discuss extensions of the basic FMM needed to enable uLLED
simulation and inverse design. For a full description of the FMM, we refer the reader to [25]
and [26], which our implementation closely follows.

2.1. Vector FMM formulations

It has long been recognized that the original FMM formulation (referred to as FFT, as in [25])
converges well only when electric fields are tangent to material interfaces [16]; this was improved
by vector FMM formulations, which introduce a local coordinate system with unit vectors that are
tangent and normal to the boundaries of features. Vector formulations allow orientation-dependent
Fourier factorizations of permittivity to be used for tangent and normal components of the electric
displacement field, which is the essential change of the vector FMM methods from the original
formulation [27]. In an inverse design setting, the vector fields must be automatically generated
from the evolving geometry. Various schemes have been developed based on interpolation [28]
and functional minimization [25]; we adopt the latter due to its applicability to continuously
varying permittivity, as is encountered during the course of optimization.

As in [25], the vector field t = [tx, ty] " for a permittivity array & is obtained by minimizing
a loss function £. High-quality vector fields should be smoothly varying and normal to the
permittivity gradient, i.e. tangent to the interfaces in the structure. This is achieved using

L(te) = ) [t Vye =ty V| + [Vaytu + [Vayty (1)

where the sum is over all the elements in t. The first term is minimized when t is correctly oriented,
while the remaining terms are minimized when t varies slowly. The resulting optimization
problem,

t = argmin L(t*, &), 2)
t*
st |t*|<1

can be solved by standard gradient-based methods.
The choice of initial t* is consequential. In a novel method termed Jones direct, we compute
an initial real-valued vector field (even for complex €) and convert to a complex Jones field using
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the method of [29]. The final complex-valued t is obtained by directly optimizing this Jones
field, and advantageously lacks both discontinuities and zeros.

A real-valued t can be obtained by avoiding the Jones conversion and directly optimizing a real
t*; this will lack discontinuities but include zeros, and is equivalent to the Pol method of [25].
The field can be normalized to have magnitude 1 everywhere (the Normal method of [25]) or it
can be converted to a Jones field as a post-processing step (the Jones method of [25]). In general,
the Normal method will yield fields having discontinuities, while the Jones method will yield
fields that lack discontinuities and zeros, but vary more rapidly than those obtained by the Jones
direct method. Thus, the Jones direct scheme has favorable characteristics for generation of a
local coordinate system represented in a Fourier basis.

Example vector fields for these methods are in Appendix A. Consistent with the theoretical
benefits discussed above, we observe best convergence for the FMM with the Jones direct
formulation (Appendix B) and use the method throughout this work.

2.2. Brillouin zone integration for aperiodic sources

Sources in periodic structures can be modeled in the FMM by expanding the source spatial
profile in terms of the layer eigenmodes [26]. However, in this approach both the sources and
the structure are periodic, which is not the case in a real uLED and can give rise to unphysical
interference effects.

In principle, larger supercells including multiple uLEDs could be modeled, but due to
the unfavorable scaling of the FMM algorithm this may be prohibitive. Absorbing boundary
conditions could also be introduced, as used previously in extensions of the FMM to accommodate
aperiodic structures [30,31]. A further alternative—the approach adopted here—is the Brillouin
zone (BZ) integration method of [17-19], in which the electric field from an isolated source in a
periodic structure is found by,

1
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where Ey,, is the field with Bloch-periodic boundary conditions for wavevector kg, and Apz is
the BZ area. The calculation of each Ey, requires a simulation of a single unit cell, and thus the
problem of modeling a large supercell is transformed into one of several smaller simulations.
Throughout this work, we approximate integrals over the Brillouin zone by averaging over a
regular kg grid. When the grid has shape M x M, we refer to the case as M X M BZ integration;
when no BZ integration is performed, we refer to this as the periodic dipole approximation (PDA).

2.3. Calculation of light extraction efficiency

For the uLED modeled here, we are primarily concerned with the total LEE and the power
radiated by the dipole. For a given wavelength, the LEE is obtained by,
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Here, Pf”’”]i;d and Py k“BC’ ¢d are the power emitted by a dipole, and power emitted by the dipole
which is extracted from the uLLED. The powers are measured with planar monitors, obtained by
summing over the powers in all the Fourier orders as described in [25], and are indexed by r,
p, and kg, corresponding to the dipole position, dipole orientation, and BZ point, respectively.
We use a dipole-orientation-dependent weight w,, with values of 1 for the x- and y-oriented
dipoles and 0.1 for the z-oriented dipoles. These generally have lower extraction efficiency and
can be suppressed in material systems such as AlInGaP by appropriately straining the quantum
wells [32].



3. uLED structure and optimization problem

We now describe the uLLED geometry and corresponding optimization problem used throughout
the rest of our analysis. We consider an array of simplified cylindrical uLEDs with a 1.4 um pitch,
which is illustrated in Fig. 1. The semiconductor region has a diameter of 1 um, the conducting
oxide has a diameter of 0.8 um, and the passivation sidewall has a thickness of 0.1 ym. Other
layer thicknesses are optimizable parameters specified elsewhere. A spatial resolution of 10 nm
is used for all layers. Refractive indices of the materials are as follows: semiconductor, 3.0;
conducting oxide, 1.9 + 0.0057; passivation, 1.5; and metal, 0.2 + 3.3i. Values are chosen to be
representative of AllnGaP, indium-tin oxide, silicon oxide, and gold, respectively.
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Fig. 1. Side and top view of the uLED unit cell analyzed throughout this work. A
high index semiconductor (n = 3.0) cylinder is embedded within a metallic substrate
(n = 0.2 + 3.37) and separated by a thin passivation layer (» = 1.5) and transparent
conducting oxide (n = 1.9 + 0.0057). The metasurface “design region” of the uLED
unit cell resides on top of the semiconductor cavity and emits into air. The material of
the metasurface is composed of a refractive index that is linearly interpolated between
the index of the semiconductor and air. The metasurface itself is parameterized by a
2D grid of “pixels” [33] in x/y and projected into the z-direction using a thickness
chosen by the optimizer. Dipoles within the uLED are located in a planar source
region embedded within the semiconductor layer, which is free to move as the optimizer
dictates.

We model dipoles in a plane within the semiconductor material, and consider x-, y-, and
z-oriented dipoles on a 20 nm grid (5847 total dipoles). The spatial profile of the dipoles is
Gaussian with a 60 nm full-width at half-maximum. Power emitted by each dipole is measured
using planar monitors positioned 50 nm from the dipole plane. We model a single plane,
corresponding e.g. to a single quantum well active region, but note that it would be possible to
model multi-quantum-well active region with no additional eigendecompositions, and therefore
relatively cheaply.

We turn now to the uLLED optimization problem. In this paper, we exercise unconstrained
optimization, as our primary aim is to demonstrate the functioning of the simulator and inverse
design pipeline, rather than to obtain designs suitable for manufacture, or to form estimates of
the potential performance of metasurface-enhanced uLLEDs. We use a monochromatic objective
L(p) =1- LEE(p) for a 630 nm emission wavelength. Here, p represents the optimizable
parameters, including layer thicknesses and the metasurface density p. The density is a two-
dimensional array with values in the range [0, 1] from which the permittivity at each point is
computed by interpolation between the permittivity of air and of semiconductor using the method
of [34].

Although one could directly optimize the elements of the density array p, this can produce
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Fig. 2. Cross sections of the steady-state electric field magnitude for dipoles at
(x,y) = (0,0) and (0,0.2) computed by FMM and FDTD. The xz and yz are taken
through the center of the 4LED, while the xy section is taken at the semiconductor/air
interface. The methods show strong agreement at all slices and for both dipole positions,
as demonstrated by the consistent representation of the complicated modal patterns.

designs with very fine features that would not be practical to manufacture. Therefore, we choose
to instead optimize a latent density p also in the range [0, 1], from which p is obtained by,

p=5 (1 +tnh (825~ 1) k) 5)

where k is a Gaussian kernel with a full-width at half-maximum of 40 nm and g = 2. This
expression is similar to the transforms commonly used in density-based topology optimization [35]
and help ensure that p lacks features which are too small by encouraging an implicit lengthscale.
Futhermore, this approach helps regularlize the optimization problem, which is solved using the
L-BFGS-B algorithm [36].

4. Field calculation and validation

To establish the validity of our method, we first make a direct comparison of the steady-state
fields computed by Meep [37], a mature FDTD solver, to those computed by FMM. We consider
a simple ¢LED lacking a metasurface, with semiconductor and conducting oxide thicknesses
of 1.0 um and 0.1 um, respectively. Dipoles emitting at 630 nm are centered vertically in the
semiconductor and positioned (with units of um) at (x, y) = (0, 0) and (0, 0.2), both oriented in
the x-direction.



Figure 2 shows cross sections of the electric field magnitude computed by the two methods.
The field structure for both dipole locations computed by FMM and FDTD are in excellent
agreement; in particular, the nodal lines found by the two methods are nearly indistinguishable.

Our FMM calculation uses the PDA with the Jones direct formulation and N = 2000.

The FDTD calculation uses a spatial resolution of 200 voxels / um, periodic boundary
conditions in the x- and y-directions, and perfectly electric conductor (PEC) boundary conditions
in the z-direction. To mitigate backreflections from the upper z-boundary, we used a 2 um
thick, adiabatic, conductive absorber layer above the uLED. Using a nonlinear optimization
algorithm [38], we fit a Lorentz-drude material model to the desired complex refractive index
values at A = 630 nm to ensure simulation stability [39]. The FDTD simulation using a broadband
Gaussian pulse centered at 630 nm and terminated the simulation after the fields were sufficiently
decayed. Just like the FMM solver, the spatial profile of the FDTD source was a normalized
Gaussian with a FWHM of 60 nm. The steady-state fields for the 630 nm wavelength were
recorded using rolling discrete-time Fourier transform monitors at the specified cross sections.

5. Solver convergence and performance

Next, we study the convergence and performance of the FMM in the context of our uLED
simulations and compare the results to FDTD. We note that the numerical accuracy of each
algorithm is fundamentally dictated by the underlying discretization resolution; for FDTD, this
corresponds to the actual spatial resolution of the grid, or the total number of simulation voxels,
whereas with FMM this refers to the spatial-frequency resolution, or the total number of Fourier
orders. To quantify the relative convergence characteristics of both algorithms, we simulated the
ULED structure and dipole configuration of Sec. 4 with multiple resolutions.

First, we examine the importance of the FMM formulation itself. Fig. 3 shows the LEE for the
x-oriented dipoles at (x, y) = (0, 0) and (0, 0.2) as a function of the Fourier orders N and for the
Jones direct and FFT formulations. For the Jones direct formulation, the LEE for both dipoles
quickly converges; the values with N = 4800 are 36.7% and 30.4% respectively, but with only
N =400 the values are 37.4% and 29.4%, in excellent agreement with the converged results. By
contrast, the FFT formulation exhibits very poor convergence; as N increases the values trend in
the direction of the Jones direct results, but they exhibit substantial fluctuation and remain far
from the converged result even with N = 4800.

We now directly compare the convergence of FMM and FDTD. Fig. 3 also shows the
convergence of LEE for both dipole positions calculated by FDTD with varying spatial resolution.
With a resolution of 200 voxels / um (Ax=5 nm), we obtain values of 39.2% and 31.7%, in
good agreement with the converged Jones direct result. Such a high spatial resolution for FDTD
is expected due to the high-contrast metals within the uLED model, although the application
of subpixel-smoothing algorithms or other conformal meshing approaches compatible with
dispersive media should accelerate the convergence [40]. In combination with the field profiles in
Fig. 2, this shows that the vector FMM can be used for modeling and LEE calculation of uLEDs,
with results comparable to high-resolution FDTD.

Despite the similarity in results between FMM and FDTD, there are major differences in the
performance and computational burden of the two algorithms. Fig. 4 shows the elapsed time
for the FMM and FDTD simulations in Fig. 3 as a function of Fourier order and resolution
respectively. All calculations were performed using 10 cores of a 2.20GHz Intel® Xeon® CPU
E5-2698 v4 with 512 GB of RAM and two NUMA nodes. Although FMMAX supports GPU
acceleration, this was not used to allow a direct comparison. The FMM results are shown for the
case where three incoherent dipoles are modeled, and where all ~6000 dipoles are modeled; the
results show the negligible incremental cost of simulating additional dipoles.

The FDTD elapsed times are shown for centered and offset dipoles; the centered-dipole
simulation used odd x-symmetry and even y-symmetry to reduce the computational burden,
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Fig. 3. Convergence of the light extraction efficiency for FMM and FDTD as a function
of Fourier order and spatial resolution respectively. Results are given for both the
centered and offset x-oriented dipole. While the Jones direct FMM formulation of
FMM converges for N > 400, the FFT formulation fails to converge; the calculated
efficiency trends in the direction of the Jones direct result, but does not reach agreement
even for N = 4800. FDTD requires a resolution of 200 voxels / um (Ax=5 nm) to reach
suitable convergence, largely due to the high-contrast metals within the uLED model.

while the offset dipole considered the full simulation volume and is representative of the general
case. Considering this offset dipole, there is approximately a 3 x 103 speedup when comparing
the 200 voxels / um FDTD results (the coarsest resolution that yields converged results) to the
N = 800 Fourier-term results (the lowest N we used in the inverse design setting).

Practically speaking, the speedup is even more significant; if FDTD simulations were carried
out for the ~6000 dipoles considered in this work, we project that CPU time would be ~2 x 107
times greater than for the equivalent calculation by FMM. If simulations considering multiple
wavelengths were carried out, the advantage would be reduced; FDTD automatically handles
multiple wavelengths within a single simulation, while with the FMM each wavelength requires
an independent simulation. However, for the uLED we have found that O (10) wavelengths are
sufficient, and in any case these simulations can easily be distributed across many machines (the
task is embarrassingly parallel). This makes FMM a strong choice for problems such as the
ULED.

We note a few other important observations regarding the convergence trends of each method.
For low N, for example, the vector field calculation contributes significantly to the total time of
the FMM method, causing the non-polynomial scaling seen in Fig. 4. The FDTD elapsed times
also exhibit some deviation from polynomial behavior and a crossover at 100 / um resolution.
Meep requires the user to properly choose a hardware configuration (e.g. the proper number
of processes to launch) to maximize the timestepping rate [41]. Choosing these parameters
correctly is highly dependent on the underlying simulation resolution, and most likely accounts
for the aforementioned crossover point. The uLED structure may also be more or less resonant
for dipoles at different positions in a manner that depends on resolution; for the FDTD algorithm,
this can also cause simulation times to vary.

While not clear from the data in Fig. 4, the FMM solver also offers advantages when used
within an optimization pipeline where many solves are performed sequentially. Specifically, the
eigendecomposition for layers whose cross-sections do not change can be cached and reused.
With Jax, this is optimization is easily done by jit-ing (just-in-time compiling) the simulation and
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Fig. 4. Comparison of elapsed time for FMM and FDTD LEE calculations. The results
indicate an approximate ~3 x 103 times speedup when comparing the 200 voxels / um
FDTD simulation to the N = 800 Fourier term FMM simulation (resolutions where both
algorithms are converged). Notably, the FDTD results correspond to a single dipole
simulation. The expected computational cost for additional dipoles scales linearly with
the number of dipoles. This is in direct contrast with the FMM method shown here,
where the marginal cost of an additional ~6000 dipoles is negligible. Therefore, the
projected speedup for a full uLED simulation is ~2 x 107.
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Fig. 5. Light extraction efficiency for various BZ integration schemes computed with
the Jones direct FMM formulation and N = 2000. Values are for individual x-oriented
dipoles and a full calculation including all x-, y-, and z-oriented dipoles in the basic
ULED. Each “scheme” is defined the regular grid of wavevectors in the first BZ used
to approximate a BZ integral, such that 3 X 3 corresponds to nine evenly distributed
points (three samples along k x and three samples along k). Importantly, for the uLED
problem, the LEE appears to converge with a relatively small number of points.

specifying that eigendecompositions be carried out at compile time. For the uLED problem, the
savings are substantial—while eigendecomposition for three patterned layers is needed at the
first step, at subsequent steps only one eigendecomposition (for the metasurface) is needed. For
the N = 800 case on our Xeon® system, this results in a step time of 49 seconds for the second
and subsequent steps, compared to 175 seconds for the first step.

Finally, to study the effect of BZ integration, we calculated LEE using the PDA and BZ
integration schemes up to 6 X 6, using the Jones direct formulation and N = 2000. The results
are in Fig. 5; values are shown for the two x-oriented dipoles and the total LEE considering all
~6000 dipoles in the active region. The quality of the PDA apparently depends on the dipole
position: for the dipole at (0, 0), going to 2 X 2 BZ integration and beyond only slightly increases



unoptimized | thicknesses | thicknesses and metasurface
metasurface - - 0.102 pum
semiconductor height 1.000 pm 0.945 pm 0.966 um
source offset 0.500 um 0.531 um 0.507 um
conducting oxide 0.100 um 0.054 um 0.102 um

Table 1. Thicknesses for the unoptimized and optimized uLEDs.

Fig. 6. The optimized metasurface density p; light and dark colors correspond to
p = 0 (air) and p = 1 (semiconductor), respectively. The dashed line indicates the
passivation/semiconductor interface.

the computed LEE value. By contrast, the dipole at (0, 0.2) has a dramatic increase in the LEE
when BZ integration is used, and a sizeable increase is also seen in the all-dipole case. This
indicates that avoiding the PDA is critical in the calculation of the LEE for a uLED.

Motivated by these results, for the remainder of this work we make use of two simulation
configurations. In the inverse design setting, to balance accuracy against speed, we use the Jones
direct method with N = 800 and 2x2 BZ integration. For validation, we use N = 2000, also with
Jones direct and 2x2 BZ integration.

6. Optimization results

To exercise our inverse design pipeline and examine the potential of metasurface-enhanced
uLEDs, we consider three cases: the first is the initial, unoptimized uLED with structure
discussed earlier, i.e. with no metasurface, conducting oxide thickness of 0.1 um, semiconductor
thickness of 1 ym, and dipoles are located 0.5 um above the oxide. In the second, the film
thicknesses are optimized, using the given values as the initial solution. In the third case, both
the film thicknesses and the metasurface density are optimizable. Here, the initial semiconductor
thickness is reduced to 0.95 pm and the initial metasurface thickness is 0.1 ym, resulting in a
structure whose optical thickness approximately matches that of the unoptimized yLED. The
latent density is uniformly initialized with a value of 0.5.

The thickness-optimized uLLED optimization proceeded for 17 iterations before the optimizer
converged, reaching an LEE of 40.1% at 630 nm, compared to 28.4% for the initial uLED. The
optimized film thicknesses are given in Table 1. Changes to thicknesses from the initial values
are relatively small, consistent with a loss landscape having many local minima, as frequently
encountered in thin film optimization problems. The uLED with optimized film thicknesses
and metasurface proceeded for 69 iterations, ultimately reaching an LEE of 56.2%. The film
thicknesses are given in Table 1, and the metasurface density is shown in Fig. 6.

To understand the mechanism for LEE improvement in the uLLEDs obtained by optimization,
we computed high-resolution maps of the LEE and emitted power for the three uLLED structures.
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Fig. 7. Spatial maps of light extraction efficiency and emitted power for the initial,
thickness-optimized, and metasurface-enhanced ¢LED. Values are for 630 nm wave-
length, averaged over dipole orientations, and for N=2000 with 2x2 BZ integration.
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Fig. 8. Light extraction efficiency vs wavelength for the initial, unoptimized yLED:;
the uLED with optimized film thicknesses; and the uLED with optimized thicknesses
and a metasurface.

These are shown in Fig. 7. As noted, our calculation considers dipoles at ~2000 locations in a
plane; each pixel in a map corresponds to a single physical dipole location, with value found by
appropriately combining those for the three dipole orientations at the location. It is evident that
the large increase in LEE for the optimized uLEDs is not simply due to a uniform increase in
the LEE, but rather a nonuniform increase together with an enhancement in the dipole power
in regions where the LEE is high. We can also observe sharp features in the LEE and emitted
power. This suggests that simulations with few dipoles on a coarse grid may yield poor estimates
of the total LEE.

Finally, Fig. 8 shows the wavelength-dependent LEE for the three cases, and illustrates the
strong enhancement of LEE at the 630 nm target wavelength. Away from the target, both optimized
HLEDs exhibit a significant drop in LEE, reaching values comparable to the unoptimized LED
with less than 5 nm of wavelength shift. This suggests that a broadband objective will be required
in order to obtain uLED designs which do not have strong wavelength dependence to LEE.

We emphasize that the uLEDs discussed above are merely examples of designs that can be



found through optimization, and we have seen many other designs with different metasurface
densities and associated maps of LEE and emitted power. In practice, an objective should
be crafted which is minimized for devices having the actual characteristics needed for uLED
applications.

7. Conclusion

We have shown that the FMM can be used to model ¢LED structures with accuracy comparable
to high-resolution FDTD, while achieving a speedup greater than 10’ compared to CPU-based
FDTD in situations where a large number of incoherent dipoles is considered. This result is
enabled by the inherent characteristics of the FMM, vector FMM formulations that dramatically
improve convergence compared to the basic FMM scheme, and BZ integration to model localized
sources. These features are available in FMMAX, a Jax-based implementation of the FMM which
we are open-sourcing alongside this work.

We used FMMAX to optimize several uLED designs, and showed that a metasurface-enhanced
HLED can increase LEE by 98% over an unoptimized design, and by 38% over a uLED with
optimized film thicknesses but no metasurface. This result indicates that metasurfaces are a
promising technology to improve uLLED performance as required for applications such as AR
displays. Next steps could include consideration of uLED structures that are more realistic, use
of optimization objectives that better target the actual requirements of uLLEDs in AR applications
(e.g. which maximize directional emission), the incorporation of manufacturability constraints in
the inverse design scheme, and alternate initialization for uLLED film thicknesses to obtain better
local optima. It would also be interesting to study the new Jones direct FMM formulation across
a wider of structures.

Finally, our method could be applied to a range of problems where spatially incoherent
emission is considered, to problems where localized sources interact with a periodic structure, or
to problems where FMM is more typically employed, such as modeling of gratings or photonic
crystals.
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Fig. 9. Automatically-generated vector fields for the metasurface layer in Fig. 6. Pol
yields a real-valued vector field tangent to material interfaces. Jones yields a complex
Jones vector field that is linear and tangent at interfaces, becoming circular away from
interfaces. Jones direct yields a field that is similar to Jones—but critically, does not
become circular between parallel interfaces, and is therefore smoother. The depicted
vectors are sampled from an underlying, higher-resolution vector field.

Appendix A: Vector field examples

Vector fields obtained for the metasurface layer in Fig. 6 and the Pol, Jones, and Jones direct
methods are shown in Fig. 9. The metasurface exhibits approximate four-fold rotational symmetry,
and so we show one quadrant to make the details of vector fields more visible.

The Pol field is obtained by solving Eq. (2) starting with a real-valued t*; the result is a
real-valued vector field that at high-contrast interfaces is large and tangent to the interfaces. Zeros
are located between parallel interfaces, e.g. at the top left, bottom left, and bottom right of the
quadrant.

The Jones field is obtained by converting the Pol field into a complex Jones vector field as
in [25]. Where the Pol field has magnitude 1, the Jones field corresponds to a linear polarization
aligned with material interfaces. At zeros of the Pol field, the Jones field corresponds to a circular
polarization.

The Jones direct field is obtained by solving Eq. (2) starting with a complex-valued t*. To
obtain the complex-valued t*, we simply take the real-valued initial field and convert to a complex
Jones vector field by the aforementioned procedure. The resulting Jones vector field again
corresponds to a tangent linear polarization at high-contrast interfaces, and circular at certain
locations (e.g. the bottom left of the quadrant), but which remains linear at some locations where
the Jones method produces a circular polarization (e.g. top left or bottom right of the quadrant).
Thus, the Jones direct field is (in some sense) smoother, and may be represented with fewer terms
in a Fourier expansion—Ieading to improved convergence.

There are a few other differences between the Jones and Jones direct fields, e.g. locations
where the Jones field is fully linear and Jones direct is merely elliptical. The field obtained
by each of these methods can in principle be fine-tuned by adding hyperparameters to Eq. (1)
which scale the smoothness and alignment terms. In future work, it would be interesting to study
convergence in the context of this hyperparameter space and with a wider range of structures.

Appendix B: Comparison of FMM formulations

FMMAX implements several FMM formulations. These exhibit virtually identical convergence for
the basic uLED structure of Fig. 1. However, for more complex pLEDs that include metasurfaces
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Fig. 10. Light extraction efficiency as a function of Fourier orders N for three separate
metasurface-enhanced uLLED designs. Each design was obtained by solving the inverse
design problem of Sec. 3 using the Pol, Jones, and Jones direct formulations during the
course of optimization. We then evaluated each design with various N and the three
formulations. Overfitting to N = 800 is seen in all cases, but the results converge as N
increases. Jones direct exhibits the best convergence of the three formulations.

this may not be expected. Further, in an inverse design setting one may encounter “overfitting”
where an optimized design performs best when evaluated with simulation settings (i.e. number
of Fourier orders, FMM formulation, and BZ integration scheme) used during the optimization
procedure. This makes it challenging to identify a preferred formulation.

Thus, to select the formulation best suited for uLED design, we solved the inverse design
problem from Sec. 3 with the Pol, Jones, and Jones direct methods (with N = 800), obtaining three
separate designs. We then evaluated the total LEE of each design using the three formulations
and Fourier orders up to N = 4800. The results are shown in Fig. 10.

The designs achieve similar performance and all show some degree of overfitting, where the
simulation settings used for optimization yield a LEE higher than the converged result. However,
increasing from N = 800 to N = 2000 (our validation setting, discussed in Sec. 5) is sufficient
to obtain converged results. Of the three formulations, Pol converges least well, and exhibits
some oscillation in the total LEE with an amplitude of ~5%. Jones and Jones direct are quite
similar, with Jones direct being slightly better on all three designs and avoiding the overfitting on
the Pol-optimized design. The results support the selection of Jones direct and N = 2000 for
validation, although a more thorough study of convergence for a wider range of structures would
be valuable.
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