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Abstract 

Surface mount technology (SMT) is an enhanced method in electronic packaging in which electronic components are 
placed directly on soldered printing circuit board (PCB) and are permanently attached on PCB with the aim of reflow 
soldering process. During reflow process, once deposited solder pastes start melting, electronic components move in 
a direction that achieve their highest symmetry. This motion is known as self-alignment since can correct potential 
mounting misalignment. In this study, two noticeable machine learning algorithms, including support vector 
regression (SVR) and random forest regression (RFR) are proposed as a prediction technique to (1) diagnose the 
relation among component self-alignment, deposited solder paste status and placement machining parameters, (2) 
predict the final component position on PCB in 𝑥, 𝑦, and rotational directions before entering in the reflow process. 
Based on the prediction result, a non-linear optimization model (NLP) is developed to optimize placement parameters 
at initial stage. Resultantly, RFR outperforms in terms of prediction model fitness and error. The optimization model 
is run for 6 samples in which the minimum Euclidean distance from component position after reflow process from 
ideal position (i.e., the center of pads) is outlined as 25.57 (𝜇𝑚) regarding defined boundaries in model. 
 

Keywords: Passive chip Component self alignment; optimal placement parameters setting; machine learning; 
predictive modeling; optimization-based modeling; pick and placement process; surface mount technology 

1. Introduction 

Surface mount technology (SMT) is an advanced method in electronic packaging in which solder paste provides 

electrical connection between surface mount components (SMCs) and electronic circuit. Three main operations are 

accomplished to produce assembled electronic circuit, including stencil printing process (SPP), pick and placement 

process (P&P), and reflow soldering. At first, solder paste is deposited onto the surface of printing circuit board (PCB). 

Then SMCs are placed automatically with the aim of P&P machine. Finally, solder joints which are formed by 

employed heat during reflow process, attach SMCs on PCB permanently. SMT enhances electronic packages by 

utilization of smaller packages, smaller circuit boards [1], smaller components, etc. On one side, miniaturization makes 

component placement more challenging since more accurate component placement is required with smaller size of 

packages with larger lead counts [1]. On the other side, mounted components move during reflow soldering process 

unintentionally because of the forces that acting on component when solder paste starts wetting. These phenomena is 

known as the ‘self-alignment’ and originated from the surface tension of molted solder that empowers component to 

move in a direction that achieves its equilibrium state [2]. So, to obtain the knowledge of how and how much chip 

components move during reflow concerning their initial status such as components geometry (miniaturized chip 

components), designed pad geometry, deposited solder paste status, and placement strategy, would be critical and 

brings the opportunity of optimizing placement parameter setting that reduces components positional offsets after 

reflow soldering.  

However, numerous studies have investigated chip component self-alignment capability from theoretical [1], 

simulation and numerical [1, 3] models’ standpoints, there is no generalized data-driven model in literature to address 

practical challenges of self-alignment [4]. Lv et al. provided a comprehensive survey on machine learning application 

in SMT [4]. Based on this survey, there is no research to employ applied machine learning method in self-alignment 

[4] while applied machine learning methods privilege over conventional statistical methods in SMT [5]. Despite a 

recently published paper by Marktinek et al. that used a one-layer neural network to predict component position after 

reflow regarding of its placement offsets in 𝑥, 𝑦, and rotational directions [6] while neglecting other factors. Moreover, 



the overarching goal of developing a self-alignment prediction model is preventing potential defects such as 

tombstoning, overhanging, etc. before entering reflow process. Particularly, tombstoning happens when SMCs are 

lifted from a pad on one end in which electrical connection between SMCs and PCB would be broken. Overhanging 

refers to the situation when SMCs land off from their pad in 𝑥 and 𝑦 directions. Accurate SMCs placement regarding 

deposited solder paste volume and offsets can reduce the possibility of tombstoning and overhanging. So, an 

optimization model that optimizes placement setting could be accomplished with the prediction model to avoid such 

defects. For the best of our knowledge, no optimization model in the literature addresses placement machining setting 

in P&P process. Hence, this enhances the necessities of: (1) obtaining insight of factors that contribute in component 

self-alignment, (2) developing a generalized data-driven model that addresses different type and size of chip 

components, (3) outlining machine learning algorithm that predicts chip components position after reflow soldering, 

(4) determining the best placement machining parameters that enhances the quality of finished electronic package. 

This study considers 6 types of passive chip components (3 resistors and 3 capacitors). A generalized optimization- 

prediction model could be a breakthrough in surface mount assembly (SMA) line since on one side, all previous studies 

considered only one or two types of passive chip components self-alignment [3, 5, 6] and on the other side, there is no 

optimization-prediction model that addresses placement machining strategy. 

From the extensive research and based on the domain knowledge, 13 variables are selected to train the prediction 

models, and three targets are defined as components offsets after reflow process, naming as post offset 𝑥, 𝑦, and 

rotation (𝜃) (i.e., post refers to component position after reflow process). Two remarkable machine learning algorithms 

including support vector regression (SVR) and random forest regression (RFR) are used. Then, we build a non-linear 

optimization (NLP) model to determine the optimized component placement setting by setting the controllable 

parameters in the P&P machine. The NLP model is solved with evolutionary strategy (ES) because of its complexity. 

The rest of this paper is organized as follows: Section 2 presents the literature related to components self-alignment; 

the built prediction models, optimization model and ES are discussed in Section 3 followed by results in Section 4; the 

conclusions and future work of this research are provided in Section 5. 

2. Literature review 

Chip components capability of being self-aligned has been investigated in several studies with the means of 

dynamic fluid concepts which describe the scientific reason of this motion. Restoring forces, mainly force originating 

from surface tension, acts on components once solder paste is in its fluid state. This force drags chip components in a 

direction that achieves its symmetry. The primary challenge regarding this phenomenon is obtaining insight into factors 

that contribute to components movement. For this matter, the experimental result is accomplished with force models 

as well as simulation models in the literature. A dynamic force model proposed by [1] demonstrates the effect of pad 

geometry, chip metallization and dimensions, solder volume, and placement offsets on components motion during the 

reflow process. This study considered one type of capacitor named as 1206. Based on the results, smaller pad lengths, 

smaller pad gaps, larger solder volume, and smaller metallization provided better self-alignment for this capacitor [1]. 

The effect of different types of solder, different types of reflow technology, different solder paste volume and different 

placement angles on self-alignment have been studied in [7] in which the importance of solder volume on components 

self-alignment along with utilization of lead-free solders have been outlined [7]. Moreover, Liukkonen et al. compared 

component offsets before and after reflowing with leaded and lead-free processes [2]. However, they proposed that 

lead-free process has more variation in self-alignment comparing leaded process [2], other potential factors like paste 

volume and offsets are neglected from their study. Chip mass, die tilt, and solder volume variations and distributions 

have been considered in the regression model by [8] to optimize static equilibrium conditions of a flip-chip. They 

concluded that the solder volume variation has more significant influence on the chip standoff height (i.e., in the 𝑧 

direction) than the chip lateral alignment accuracy (i.e., in 𝑥 and 𝑦 directions) [8]. 

3. Methodology 

In this section, a comprehensive description of the experiment and collected data are presented and contributing 

factors under this study are introduced. Furthermore, brief descriptions of applied machine learning techniques and 

their justification for this study are also presented. Finally, the optimization model is discussed along with the 

metaheuristic algorithm that is considered to solve the proposed optimization problem. 



3.1. Data description 

The experiment is designed to assemble 6 passive chip component types, including 3 resistors and 3 capacitors in 

3 size categories as R1005 and C1005 (1mm×0.5mm), R0603 and C0603 (0.6mm×0.3mm), and R0402 and C0402 

(0.4mm×0.2mm).660 placements is considered for each component type (6 different components) which means 3940 

placements in total. All components are placed horizontally on two corresponding pads (For detail, see Fig. 1). Longer 

and shorter sides of the component are considered as parallel with 𝑥 and 𝑦 directions respectively, and rotation is 

defined as a circular movement on 𝑥-axis. The red dot in the Fig. 1  indicates the center of two pads which is considered 

as a reference point (i.e., {0, 0}). At first stage, the solder paste is deposited on the PCB and various factors including 

paste volume ratio on pad 1 and 2, and paste offsets (𝑥 and 𝑦) on pad 1 and 2 are measured with the means of advanced 

solder paste inspection (SPI) machine. Fig. 1(a) presents solder paste positional factors in 𝑥𝑦-plane. Volume average 

ratio and volume difference ratio are defined as the average and difference of deposited volume on pad 1 and pad 2 

respectively. Then, components are placed with intentional offsets in 𝑥, 𝑦, and rotational (𝜃) directions with the aid of 

P&P machine (see Fig. 1(b) for description of placement offsets). Finally, components are permanently attached on 

PCB by nitrogen reflow oven with given thermal profile following the justification of used lead-free solder paste 

guidelines. Table 1 and Table 2 present considered categorical and continuous factors with a brief statistical description 

from this experiment respectively. 

Table 1. brief explanation and levels of selected categorical variables 

Categorical Variables Description Name Level 1 Level 2 Level 3 Level 4 Level 5 

Component Sizes (1000𝜇𝑚2) 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑒𝑛𝑔ℎ𝑡 × 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑖𝑑𝑡ℎ 𝜆1 80 180 500 N/A N/A 

Component Types Resistor / Capacitor 𝜆2 R C N/A N/A N/A 

Pad Sizes (1000𝜇𝑚2) 𝑃𝑎𝑑 𝑙𝑒𝑛𝑔ℎ𝑡 × 𝑃𝑎𝑑 𝑤𝑖𝑑𝑡ℎ 𝜆3 44 102 280 N/A N/A 

Pad Gaps (𝜇𝑚) Gap btw. two pads 𝜆4 160 260 250 450 460 

Table 2. brief explanation and levels of selected continuous variables 

Continuous Variables Description Name Max Min (𝜇, 𝜎) 

Volume Avg. (%) Avg. of printed volume ratio on 2 corresponding pads 𝛾1 154.77 46.32 (95.25, 16.62) 

Volume Diff. (%) Diff. of printed volume ratio on 2 corresponding pads 𝛾2 96.40 -91.48 (2.21, 27.85) 

Paste Offset X 1 (𝜇𝑚) Center of deposited solder paste on pad 1 in x direction 𝛾3 698.81 188.54 (403.96, 159.05) 

Paste Offset Y 1 (𝜇𝑚) Center of deposited solder paste on pad 1 in y direction 𝛾4 316.63 18.86 (129.22, 64.60) 

Paste Offset X 2 (𝜇𝑚) Center of deposited solder paste on pad 2 in x direction 𝛾5 -76.96 -412.58 (-216.29, 90.52) 

Paste Offset Y 2 (𝜇𝑚) Center of deposited solder paste on pad 2 in y direction 𝛾6 316.63 8.13 (130.00, 62.87) 

Pre Offset X (𝜇𝑚) Center of component in x direction after placement 𝜒1 316.91 -37.15 (123.16, 78.56) 

Pre Offset Y (𝜇𝑚) Center of component in y direction after placement 𝜒2 264.57 -97.88 (61.38, 58.78) 

Pre Offset Rotation (𝑑𝑒𝑔. ) Component circular movement on x-axis 𝜒3 24.78 -32.90 (-0.12, 2.98) 

3.2. Support vector regression (SVR) 

The SVR is a prediction technique that is able to solve complex nonlinear regression problems by mapping input 

features into high-dimensional space 𝐹, wherein they are linearly correlated with the problem target. For a given 

training set with sample size 𝑛;  {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)}  ⊂ 𝑋 × ℝ where 𝑋 denotes the space of input features (𝑋 =ℝ𝑑 , 𝑑 is number of features) and ℝ is the set of real numbers for continuous target 𝑦, the SVR method fits hyperplane 𝐹(𝑋) =  〈𝑤, 𝑥〉 + 𝑏, in which most data points fall on this plane [9]. Note that 〈 . , . 〉 denotes the dot product of any 

( (

Fig. 1. positional relation of pads, solder pastes and component in 𝑥𝑦-plane. (a) paste offsets description; (b) placement offset description 



two arbitrary vectors. The distance of 𝜀 and – 𝜀 from defined hyperplane is defined as marginal tolerance range to 

penalize prediction point out of this boundary with a predefined penalty ratio of  𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑛𝑖=1  in which 𝜉𝑖 and 𝜉𝑖∗ 

denotes the amount of deviation from defined hyperplane for 𝑖 = 1, … , 𝑛 , where 𝑛 is data size. The SVR estimation 

function and corresponding constraints are shown in Eq. (1) and (2) in which the objective is minimizing the norm of 

hyperplane weight (𝑤) and penalty to balance the hyperplane and its tolerance margins. 𝑚𝑖𝑛          12 ∥ 𝑤 ∥2+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑛𝑖=1                                (1) 

𝑠. 𝑡.         { 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏     ≤  𝜀 + 𝜉𝑖−𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏  ≤  𝜀 + 𝜉𝑖∗𝜉𝑖 , 𝜉𝑖∗ ≥ 0  𝑓𝑜𝑟 𝑖 = 1, … , 𝑛                                                 (2) 

In this study, the ε-insensitive loss function is considered along with the linear kernel. For the SVR setting, we set 𝜀 =  0.1 as the distance of boundaries from hyperplane and 𝐶 =1 as the penalty ratio. 

3.3. Random forest regression (RFR) 

The RFR is an ensemble prediction technique which is built based on a collection of randomized regression trees. 

In RFR, each randomly selected tree employs random split on feature space with the objective of reducing prediction 

error. Finally, RFR, acquires the mean of individual outputs to get more stable prediction [10]. For a given training set 

with sample size 𝑛; {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)}  ⊂ 𝑋 × ℝ , where 𝑋 denotes the space of input features (𝑋 = ℝ𝑑 , 𝑑 is the 

number of features) and ℝ is the set of real numbers for continuous target 𝑦, a random forest is defined as a hierarchical 

tree-structured predictor [10] in which:  𝐹(𝑥) =  1𝐽 ∑ 𝑓𝑗(𝑥)𝐽𝑗=1 , where 𝐽 is the number of trees in the forest and 𝑓𝑗(𝑥) is 

the estimation function of 𝑗th tree that is trained on a random split of input features [10]. For a decision tree with 𝑀 

splitting nodes, the feature space would be splitting into 𝑀 regions as 𝑅𝑚 in which:𝑓𝑗(𝑥) = ∑ 𝑏𝑚 𝜑(𝑥, 𝑅𝑚)𝑀𝑚=1 ; 𝑓𝑜𝑟 𝑗 = 1, … , 𝐽, where 𝑏𝑚 is the corresponding constant for each region. 𝜑(𝑥, 𝑅𝑚) is the binary 

decision function that shows whether input feature 𝑥 is selected (i.e., 𝜑(𝑥, 𝑅𝑚)=1 if 𝑥 ∈  𝑅𝑚)  or not ( 𝜑(𝑥, 𝑅𝑚) = 0 

if 𝑥 ∉ 𝑅𝑚). In this study, the number of trees is initialized as 50 and trees are fully grown. 

3.4. Passive chip component placement NLP model 

The placement parameters that are needed to be optimized are the last 3 continuous variables (𝜒𝑑; 𝑑 ∈ 𝐷 = {1,2,3}) 

shown in Table 2, and a combination of them represents a placement setting for specific component placement in 

mounting process. The first 6 continuous variables (𝛾𝑖; 𝑖 ∈ 𝐼 = {1, … ,6}) in Table 2, are solder paste properties 

corresponding each pad. Finally, the 4 categorical variables (𝜆𝑗; 𝑗 ∈ 𝐽; 𝐽 = {1, … ,4}) in  

Table 1 indicates a specific component directory and its corresponding pad directory that is designed to be placed 

on PCB. The solder paste properties-related variables and component and pad directory-related variables are 

considered as features in training SVR and RFR prediction models to capture the effect of different components and 

solder paste status on components self-alignment. These variables are given variables in optimization model. The main 

objective of the NLP model is to reduce the Euclidean distance of component position after reflow soldering from 

reference point (𝑅𝑥 , 𝑅𝑦) (see Eq. (3)). Rotational offset (𝜃) is also addressed as a hard constraint in Eq. (4). The 

proposed NLP model considers optimization for component position in 𝑥, 𝑦, and 𝜃 directions with a user predefined 

threshold for each (see Eq. (4)-(6)). The reason behind this is that no placement would accrue with zero offset 

concerning ideal position in real production line. The list of notations used to drive the objective function and 

constraints of the proposed NLP optimization model is shown in Table 3. The functional values are estimated based 

on the trained SVR and RFR prediction models, as shown: 

 

 

 

 

 

 



Table 3. list of notations 

𝑚𝑖𝑛       √∥ 𝑅𝑥 − 𝐹𝑥(𝜆𝑗𝑘 , 𝛾𝑖 , 𝜒𝑑) ∥2 + ∥ 𝑅𝑦 − 𝐹𝑦(𝜆𝑗𝑘 , 𝛾𝑖 , 𝜒𝑑) ∥2               (3) 

𝑠. 𝑡.         |𝐹𝜃(𝜆𝑗𝑘 , 𝛾𝑖 , 𝜒𝑑)| ≤  𝜏𝜃                    (4)                 |𝐹𝑥(𝜆𝑗𝑘, 𝛾𝑖 , 𝜒𝑑)| ≤  𝜏𝑥                  (5)                 |𝐹𝑦(𝜆𝑗𝑘 , 𝛾𝑖 , 𝜒𝑑)| ≤  𝜏𝑦                  (6)                 𝐿𝑑 ≤ 𝜒𝑑 ≤ 𝑈𝑑; 𝑑 ∈ 𝐷; 𝑖 ∈ 𝐼; 𝑗 ∈ 𝐽; 𝑘 ∈ 𝐾                (7) 

The thresholds (i.e., 𝜏𝜃 , 𝜏𝑥 , 𝜏𝑦 ) in Eq. (4)-(6) are considered as customer defined expectation limits and are defined 

as 𝜏𝜃 = 2 degree, 𝜏𝑥 = 20% of pad length (𝜇𝑚), 𝜏𝑦 = 20% of pad width (𝜇𝑚) in this study, based on experts’ 
opinion. Furthermore, since the aim of this model is to drive a placement strategy for a given component and pad 

directory and solder paste properties, decision variables are limited with lower and upper boundaries in which lower 

bound presents center of two pads and upper bound presents center of two printed pastes for decision variables 𝜒1 and 𝜒2 such that (𝐿𝜒1 , 𝑈𝜒1) = (𝑅𝑥, (𝛾3 + 𝛾5) 2⁄ ) and (𝐿𝜒2 , 𝑈𝜒2) = (𝑅𝑦, (𝛾4 + 𝛾6) 2⁄ ). Concerning upper bound of 𝜒3, the 

slope of two deposited solder pastes is calculated as (𝐿𝜒3 , 𝑈𝜒3) = (𝑅𝜃 , 𝑎𝑟𝑐𝑡𝑎𝑛((𝛾4 − 𝛾6) (𝛾3 − 𝛾5⁄ ))). 

3.5. Solution approach 

Since the proposed optimization model involves probabilistic SVR and RFR prediction functions in its formulation 

(non-linear functions), it is hard to solve with deterministic optimization. For this matter, a population-based 

metaheuristic method, evolutionary strategy (ES), is used [11] to find the optimal placement setting for proposed NLP 

problem. Basically, ES saves the best from a population to amend next generation [11]. So, in the end, the best 

population survives with ES. ES is chosen in this research rather than other population-based metaheuristics because 

the optimization problem of this research consists of continuous and categorical variables with real-valued decision 

variables. So, ES makes the configuration of proposed NLP simpler in terms of encoding real-valued variables [11]. 

Moreover, ES converges to an optimal or near optimal solution faster than other methods such as genetic algorithm 

(GA) [11]. The formulation in [11] is modified for proposed NLP as shown in Algorithm 1. The proposed algorithm 

employs normal distribution 𝑁(0, 𝜎) to produce offspring and (𝜇, 𝜆)-ES is used as a selection strategy in which best 

children are selected to create the next generation [11]. 

Notation Name Description 

Indices and Sets 

𝑑 ∈ 𝐷 
Set of decision variables in optimization model; placement parameters setting in 𝑥, 𝑦, and rotational 

directions 𝑖 ∈ 𝐼 Set of given continuous variables in prediction model; solder paste properties-related factors 𝑗 ∈ 𝐽 Set of given categorical variables in prediction model; component and pad directory-related factors 𝑘 ∈ 𝐾 Set of level of categorical variables; 𝐿 = {1, 2, 3, 4, 5} 

Variables 

𝜒 Decision variable; placement parameters setting 𝛾 Given continuous variable in prediction model 𝜆 Given categorical variable 

Parameters 

(𝑥, 𝑦, 𝜃) Component positional offsets in 𝑥, 𝑦, and rotational directions 𝜏 Threshold of prediction-optimization constraint 𝐿𝑑, 𝑈𝑑 Lower and upper bounds for placement parameter 𝑑, respectievely 

Function 𝐹 Prediction function (SVR and RFR) 



         Algorithm 1. ES to retrieve optimal placement parameters; μ = 5, λ = 10, σ = 0.5, G = 10 

4. Results and discussion 

The result of experiment is divided in 70: 10: 20 as training: validating: testing sets in order to: (1) train SVR and 

RFR prediction models on the training set and tune the parameters of models with validating set; (2) test SVR and 

RFR models with the unseen testing set. Moreover, the coefficient of determination (𝑅2) is employed to measure the 

fitness of learning algorithm on training set along with root-mean-squared error (RMSE) which is used to evaluate the 

performance of the prediction model on testing set. Table 4 presents the 𝑅2 value of training set and an RMSE value 

of testing set for SVR and RFR prediction models. 

Table 4. Testing accuracy measures of SVR and RFR prediction models 

Prediction Model 
Post Offset 𝑥 (𝜇𝑚) Post Offset 𝑦 (𝜇𝑚) Post Offset 𝜃 (𝑑𝑒𝑔. ) 𝑅𝑀𝑆𝐸(𝜇𝑚) 𝑅2 𝑅𝑀𝑆𝐸(𝜇𝑚) 𝑅2 𝑅𝑀𝑆𝐸(𝜇𝑚) 𝑅2 

SVR 18.32 0.38 16.65 0.42 1.61 0.02 

RFR 15.48 0.94 12.63 0.95 1.56 0.87 

Initialize 𝑃𝜇  as the number of parents in population, 𝜆 as the number of offspring, 𝐺 as the 

number of generations, 𝑁(0, 𝜎) as mutation operator. Next generation population is selected 

based on (𝜇, 𝜆)-ES. 

Randomly selected population 𝑃 of size 𝜇 

while 𝑔 = {1, … , 𝐺} do 

      for 𝑚 = 1, … , 𝜇 do 

          select parent 𝑝 with a uniform probability from 𝑃𝜇  

          for 𝑜 = 1, … , 𝜆 do 

                       mutate parent p by 𝜎 to form 𝜆 offspring 

                       Check 𝑏𝑜𝑢𝑛𝑑𝑒𝑟𝑖𝑒𝑠 == 𝑇𝑢𝑟𝑒 &  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 == 𝑇𝑟𝑢𝑒 in proposed NLP 

          end 

      end 

      return 𝑃𝜇×𝜆 and let 𝐼 be a solution in 𝑃𝜇×𝜆 

      calculate the probability of successful mutation by 
15 rule and update 𝜎 

      for 𝑡 = 1, … , 𝜇 × 𝜆 do 

           evaluate fitness function in the proposed NLP 

      end 

      return 𝑓𝜇×𝜆 objective values 

      from 𝑓𝜇×𝜆 select top 𝜇 best fitness and corresponding 𝑆𝜇 solutions from 𝑃𝜇×𝜆 

      replace 𝑃𝜇 == 𝑆𝜇 

      𝑔+= 1 

end 

return best solution from the final population 𝑃𝜇 



Based on the prediction results, RFR outperforms in terms of both model fitness on the training set and prediction 

error on the testing set. The model is fitted with 𝑅2 value of 94%, 95%, and 87% for components offset after reflow 

soldering in 𝑥, 𝑦, and 𝜃 directions respectively. Moreover, RFR model predicts components position after reflow 

soldering with 15.48 (𝜇𝑚), 12.65 (𝜇𝑚), and 1.56 (deg.) prediction error in 𝑥, 𝑦, and 𝜃 directions respectively. At the 

next step, the probabilistic function of RFR is employed in the optimization model. Basically, RFR’s mathematical 
mapping function from input feature space to output space, is used in optimization model. So, for any given solution 

in feature space such as solder paste average volume ratio, the optimization model searches for optimal component 

position before reflow soldering (𝑥, 𝑦, 𝜃 ) in which it has minimum offsets after reflow soldering (see NLP formulation 

in section 3.4). To show the result, we run the optimization model for six samples, each component type once. In Fig. 

2, the pink triangle shows actual result from experiment and violet rectangle presents optimized result for component 

offset before and after reflow soldering respectively. It is worthy to mention that components position is not necessary 

equal before and after reflow soldering because components move during reflow process by the self-alignment effect. 

As mentioned before, the aim of this study is finding the best placement in respect of such motion during reflow 

process. Based on the results, the optimization model is terminated with the objective value of 25.57 (i.e., component 

distance from ideal position after reflow process) for all samples regarding proposed boundaries and thresholds in 

section 3.4. As shown in Fig. 2, optimal placement parameter (i.e., violet rectangle) varies dramatically from actual 

placements in our experiment. To achieve the least offsets after reflow soldering, it is suggested to place components 

with initial offsets of (0, 50) (𝜇𝑚) in 𝑥 and 𝑦 directions and (-2, 2) (deg.) for rotation. Moreover, rerunning the 

experiment with optimized placement parameters could verify this optimization model. However, errors originating 

from the prediction model and SMT machinery operations would affect the final accuracy regardless of the optimized 

placement.  

5. Conclusion and future work 

This study employed 13 potential factors that contribute in components movement during reflow soldering and 

applied two magnitude machine learning approaches as SVR and RFR to predict passive chip components position 

after reflow soldering in 𝑥, 𝑦 and rotational directions. Then an NLP model is developed to optimize component 

placement setting including placement in 𝑥, 𝑦 and rotational directions with the objective of minimizing the probability 

function of proposed prediction models. Based on the result, RFR outperforms in terms of training fitness and 

prediction error and is chosen for the optimization model. The optimization results, which are examined on 6 samples, 

show the objective value as 25.57 (𝜇𝑚) that indicates the minimum Euclidean distance from component position after 

reflow process from ideal position (i.e., center of pads) regarding considered boundaries and thresholds in the model. 

Moreover, placement parameters for each sample is also retrieved. Based on the result for these 6 samples, optimal 

Fig. 2. experiment result ( actual) vs. optimized components offsets (a) before reflow soldering in 𝑥 direction; (b) before reflow soldering in 𝑦 

direction; (c) before reflow soldering in rotational direction; (d) after reflow soldering in x direction; (e) after reflow soldering in y direction; (f) 

after reflow soldering in rotational direction 

(a) 

(d) 

(b) (c) 

(e) (f) 



placement setting is between (0, 50) (𝜇𝑚) in 𝑥 and 𝑦 directions and between (-2, 2) (deg.) for rotation based on specific 

given factors including solder paste average and difference volume ratio and solder paste offsets (𝑥 and 𝑦). It is also 

recommended to verify optimization results with real experiment. 

However, the proposed prediction-optimization model is the first in component self-alignment, but four main areas 

would be recommended as future works. Specifically, it is to: (1) develop the multi-target prediction model that 

considers all targets simultaneously; (2) reduce prediction error with the aid of advanced machine learning techniques 

such as feature selection, hyperparameter tuning, etc.; (3) consider all prediction targets in objective function of 

optimization model; (4) design stochastic version of the optimization model instead of deterministic model to address 

errors origination from prediction model as well as random error in the machinary operations. 
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