Table of Contents
- 1. Product Overview
- 2. In-depth Technical Parameter Analysis
- 2.1 Absolute Maximum Ratings
- 2.2 Electrical and Optical Characteristics
- 2.3 Thermal Characteristics
- 3. Uchambuzi wa Mkunjo wa Utendaji
- 3.1 Mkondo wa Mwelekeo wa Moja kwa Moja dhidi ya Voltage ya Mwelekeo wa Moja kwa Moja (Mchoro 3)
- 3.2 Relative Radiant Intensity vs. Forward Current (Figure 5)
- 3.3 Relative Radiant Intensity vs. Ambient Temperature (Figure 4)
- 3.4 Spectral Distribution (Figure 1)
- 3.5 Radiation Pattern (Figure 6)
- 4. Mechanical and Packaging Information
- 4.1 Outline Dimensions and Tolerances
- 4.2 Polarity Identification
- 5. Welding and Assembly Guide
- 6. Mapendekezo ya Utumizi na Mambo ya Kukusudiwa
- 6.1 Saketi ya Kawaida ya Utumizi
- 6.2 Mambo Muhimu ya Kukusudiwa
- 7. Ulinganishi wa Kiufundi na Tofauti
- 8. Maswali Yanayoulizwa Mara kwa Mara (Kulingana na Vigezo vya Kiufundi)
- 9. Practical Design and Usage Cases
- 10. Brief Introduction to Working Principles
- 11. Mwelekeo wa Kiufundi na Usuli
1. Product Overview
LTE-3273L is a discrete infrared (IR) component designed for applications requiring reliable infrared light emission and detection. It belongs to a class of optoelectronic devices intended to perform in environments where infrared signal transmission is critical. The core functions of the device are to emit infrared light of a specific wavelength under electrical drive, and/or to detect incident infrared radiation and convert it into an electrical signal.
This product is positioned to provide solutions for systems that require a balance of high optical output, efficient electrical characteristics, and broad emission/detection patterns. Its design meets the need for components that operate effectively under pulsed conditions, which is common in digital communication protocols, aiming to save power consumption and improve signal clarity.
Faida Kuu:LTE-3273L inatofautisha kupitia sifa chache muhimu. Imebuniwa kwa ajili ya uendeshaji wa mkondo wa juu, huku ikidumisha voltage chanya ya chini kiasi, jambo linalosaidia kuongeza ufanisi wa umeme kwa ujumla na kupunguza mkazo wa joto. Kifaa hiki hutoa mwonekano mkali wa mnururisho, uwezo wa kufikisha ishara nzuri kwa umbali mrefu au kupenya vizuizi. Pembe yake ya upana ya mtazamo inahakikisha eneo pana la mipaka, na kufanya mahitaji ya kulinganisha kati ya kifaa cha kutuma na kigunduzi katika muundo wa mfumo kuwa si magumu sana. Mwishowe, ufungaji wazi huruhusu usafirishaji wa juu zaidi wa mwanga, huku ukipunguza kiwango cha chini cha kunyonya ndani au kutawanyika.
Soko Lengwa na Matumizi:Kifaa hiki kinalenga hasa sekta ya elektroniki ya watumiaji, otomatiki ya viwanda, na usalama. Matumizi yake ya kawaida ni pamoja na lakini siyo tu: vifaa vya kudhibiti kwa mbali vya infrared vya televisheni na vifaa vya sauti, viungo vya mawasiliano bila waya kwa umbali mfupi, sensorer za ukaribu, vichunguzi vya hesabu ya vitu, na mifumo ya kengele ya usalama inayogundua kukatika kwa miale. Uwezo wake wa kasi pia hufanya uwezekano kwa itifaki za msingi za mawasiliano ya data ya infrared.
2. In-depth Technical Parameter Analysis
Sehemu hii inatoa ufafanuzi wa kina na usio na upendeleo wa vigezo muhimu vilivyoorodheshwa kwenye hati ya maelezo, na kuelezea umuhimu wao katika usanifu na utumiaji.
2.1 Absolute Maximum Ratings
These ratings define the stress limits that may cause permanent damage to the device. Operation at or near these limits is not recommended to ensure reliable, long-term performance.
- Power Dissipation (Pd): 150 mW- This is the maximum power the device can dissipate as heat when the ambient temperature (TA) is 25°C. Exceeding this limit risks overheating and damaging the semiconductor junction, leading to accelerated degradation or catastrophic failure. Designers must ensure the power dissipation (IF * VF) generated by the operating conditions (forward current and voltage) remains below this value, with an appropriate margin.
- Peak Forward Current (IFP): 2 A- Hii ndiyo kiwango cha juu cha mkondo kinachoruhusiwa kwa uendeshaji wa msukumo, kimebainishwa chini ya hali ya msukumo 300 kwa sekunde (pps), upana wa msukumo 10 µs. Kiwango hiki cha juu kinaruhusu kifaa kutoa mwanga wa papo hapo mwingi sana ndani ya misukumo mifupi, ikifaa kabisa kwa udhibiti wa mbali au kwa misukumo yenye ishara nzili katika mazingira yenye kelele.
- Mkondo wa mbele endelevu (IF): 100 mA- Hii ndiyo kiwango cha juu cha mkondo wa moja kwa moja unaoweza kutumiwa kwa mfululizo. Kwa matumizi mengi ya mwanga unaoendelea, mkondo wa uendeshaji lazima udumishwe kwa kiwango hiki au chini. Mkondo wa kawaida wa uendeshaji kwa kawaida ni mdogo zaidi (mfano 20-50 mA), ili kuhakikisha umri wa kifaa na kudhibiti joto.
- Reverse Voltage (VR): 5 V- The maximum reverse voltage that can be applied across the LED. Exceeding this value may cause breakdown and damage the device. Circuit protection measures such as series resistors or parallel protection diodes are typically used to prevent reverse voltage spikes.
- Operating and Storage Temperature Range:Kifaa hiki kina anuwai ya joto la kufanya kazi kutoka -40°C hadi +85°C, na anuwai ya joto la uhifadhi kutoka -55°C hadi +100°C. Anuwai hizi pana huzifanya zifae kwa matumizi kama vile magari, viwanda, na nje ambapo joto kali linaweza kukutana.
- Joto la kuchomeza pini: 260°C kwa sekunde 5- Hii inafafanua uvumilivu wa mkunjo wa kuchomeza tena. Uainishaji wa umbali wa 1.6mm kutoka kwa mwili ni muhimu sana; kutumia joto karibu zaidi na kifuniko cha plastiki kunaweza kusababisha mabadiliko ya umbo au uharibifu wa ndani.
2.2 Electrical and Optical Characteristics
Hizi ni vigezo vya kawaida vya utendaji vilivyopimwa chini ya hali maalum za majaribio (TA=25°C). Zinaelezea tabia ya kifaa katika mzunguko wa umeme.
- Uwiano wa mnururisho (IE):
- 5.6 - 8.0 mW/sr @ IF= 20mA- This is the optical power emitted per unit solid angle (steradian). It is a direct indicator for measuring the "brightness" of an IR light source from the front. This range represents typical unit-to-unit variation.
- 28.0 - 40.0 mW/sr @ IF= 100mA- Inaonyesha uhusiano usio wa mstari kati ya mkondo na pato. Kuongezeka kwa mkondo mara 5, huongeza nguvu ya mionzi takriban mara 5, ikionyesha ufanisi mzuri hata katika mikondo ya juu.
- Upeo wa urefu wa wimbi la utoaji (λPeak): 940 nm- Wavelength at which the device emits maximum optical power. 940nm belongs to the near-infrared spectrum and is invisible to the human eye. This is a common wavelength for remote controls as it avoids visible red light and matches well with the sensitivity characteristics of silicon photodetectors.
- Spectral Line Half-Width (Δλ): 50 nm- This parameter is also known as Full Width at Half Maximum (FWHM), indicating the spectral purity of the emitted light. A value of 50 nm means the emitted light covers a wavelength band centered around the 940nm peak with a width of approximately 50nm. This is typical for standard GaAs infrared emitting diodes.
- Forward Voltage (VF):
- 1.25 - 1.6 V @ IF= 50mA- Voltage drop across the device when conducting a current of 50mA. This low VFis a key characteristic that reduces power loss and heat generation.
- 1.85 - 2.3 V @ IF= 500mA- VF Inatofu ya upinzani wa ndani wa diode, thamani hii huongezeka kwa kuongezeka kwa mkondo. Thamani hii ni muhimu sana kwa kubuni kiendeshi cha msukumo wenye mkondo mkubwa.
- Mkondo wa nyuma (IR): Upeo wa 100 µA @ VR= 5V- Ndogo ya mkondo wa uvujaji unaopita wakati voltage ya juu ya nyuma inatumika. Kwa nadharia thamani hii inapaswa kuwa ya chini.
- Pembe ya mtazamo (2θ1/2): 40°- Hii ni pembe kamili wakati ukubwa wa mnururisho unapungua hadi nusu ya thamani yake ya juu zaidi (mhimlili). Pembe ya 40° hutoa boriti ya mwanga pana kiasi, inayofaa kwa matumizi ambayo usawazishaji sahihi ni mgumu.
2.3 Thermal Characteristics
Ingawa haijaorodheshwa wazi kwenye jedwali tofauti, tabia ya joto inaweza kudaiwa kutoka kwa vigezo kadhaa. Kipimo cha matumizi ya nguvu (150mW) kimsingi ni kikomo cha joto. Mkunjo wa utendaji (utajadiliwa baadaye) unaonyesha jinsi pato na voltage ya mbele zinavyobadilika kulingana na halijoto ya mazingira. Usimamizi bora wa joto (kupitia eneo la shaba la PCB au kizima joto) ni muhimu kudumisha utendaji na uaminifu, hasa wakati wa kufanya kazi karibu na mkondo wa juu unaoendelea.
3. Uchambuzi wa Mkunjo wa Utendaji
Mikunjo ya kawaida hutoa ufahamu wa kuona na wa kipimo wa tabia ya kifaa chini ya hali tofauti, ambayo ni muhimu kwa muundo thabiti wa saketi.
3.1 Mkondo wa Mwelekeo wa Moja kwa Moja dhidi ya Voltage ya Mwelekeo wa Moja kwa Moja (Mchoro 3)
This IV curve shows the typical exponential relationship of a diode. At low currents, the voltage is low. As the current increases, the voltage rises. This curve allows designers to select an appropriate current-limiting resistor for a given supply voltage. For example, to drive an LED from a 5V supply at 100mA, the resistor value R = (Vsupply- VF) / IF. Using a typical VF of approximately 1.6V (extrapolated) at 100mA, R will be (5 - 1.6) / 0.1 = 34 ohms. The power in the resistor is I2R = 0.34W.
3.2 Relative Radiant Intensity vs. Forward Current (Figure 5)
This graph illustrates the dependence of light output on drive current. It is typically linear at lower currents, but at very high currents, it may show signs of saturation or reduced efficiency due to thermal effects and internal quantum efficiency. The curve confirms that pulsed operation at 2A (from Absolute Maximum Ratings) yields a much higher instantaneous output than continuous operation at 100mA, demonstrating its utility in long-distance signaling.
3.3 Relative Radiant Intensity vs. Ambient Temperature (Figure 4)
This is the key curve for understanding environmental impact. It shows that radiant intensity decreases as ambient temperature increases. This is a characteristic of LEDs; a higher junction temperature reduces internal quantum efficiency. For example, the output at +85°C may be only 60-70% of the output at +25°C. Designers must account for this derating in systems that must operate reliably across the entire temperature range. This may require driving the LED at a slightly higher current at elevated temperatures to compensate for the lost light output, provided the power dissipation limits are not exceeded.
3.4 Spectral Distribution (Figure 1)
Hii inaonyesha wigo wa utoaji, unaozingatia 940nm, na FWHM ya 50nm. Inathibitisha kifaa kinatoa mwanga katika eneo la karibu infrared, na inasaidia kuchagua kichujio cha macho kinacholingana au kutathmini usumbufu unaowezekana kutoka kwa vyanzo vya mwanga vya mazingira (kama jua lenye wigo mpana au balbu ya incandescent).
3.5 Radiation Pattern (Figure 6)
Mchoro huu wa polar unatoa mtazamo wa kina wa usambazaji wa pembe ya mwanga unaotolewa. Unawakilisha kielelezo pembe ya mtazamo ya 40° (2θ1/2). Umbo la curve ni muhimu sana kwa kubuni lenzi au kioakisi ili kusawazisha au kueneza zaidi mwale wa mwanga ili kufaa matumizi maalum.
4. Mechanical and Packaging Information
4.1 Outline Dimensions and Tolerances
The device utilizes a standard through-hole package with a flange to provide mechanical stability and potential heat dissipation. Key dimensions include body diameter, lead pitch, and overall length. All dimensions are specified in millimeters. Unless otherwise noted for specific features, the standard tolerance is ±0.25mm. Lead pitch is measured at the point where the leads exit the package body, which serves as the standard reference for PCB hole placement. The maximum resin protrusion beneath the flange is 1.5mm, which is important for PCB standoff height and cleaning.
4.2 Polarity Identification
Kwa mtoa miale ya infrared (LED), pini ndefu kwa kawaida ndio anodi (chanya), na pini fupi ndio katodi (hasi). Mchoro wa umbo katika hati ya maelezo unapaswa kuonyesha wazi jambo hili, kwa kawaida kuna uso tambarare kwenye kifurushi au ukingo karibu na pini ya katodi. Uwezo sahihi ni muhimu sana; upendeleo wa nyuma unaozidi 5V unaweza kuharibu kifaa.
5. Welding and Assembly Guide
Uchomaji wa reflow:The specified parameter is 260°C for a maximum of 5 seconds, measured at a point 1.6mm from the package body. This aligns with common lead-free reflow profiles (peak temperature 240-260°C). The 1.6mm distance is critical to prevent the plastic package from exceeding its glass transition temperature and deforming.
Hand soldering:If hand soldering must be performed, a temperature-controlled soldering iron should be used. The contact time per pin should be minimized, ideally less than 3 seconds, with a heat sink clip applied to the pin between the iron and the package body.
Usafi:Baada ya kulehemu, mchakato wa kawaida wa kusafisha PCB unaweza kutumika, lakini unapaswa kuthibitisha utangamano wa kioevu cha kusafisha na kifuniko cha wazi cha resin.
Masharti ya Uhifadhi:Ili kuzuia unyevu (ambayo inaweza kusababisha "popcorn" wakati wa kulehemu kwa njia ya reflow), vifaa vinapaswa kuhifadhiwa katika mazingira kavu, kwa kawaida chini ya unyevu wa jamaa wa 40% kwenye joto la kawaida, au ikiwa kuhifadhi kunadumu kwa muda mrefu, vinapaswa kuhifadhiwa kwenye mfuko uliofungwa na dawa ya kukausha.
6. Mapendekezo ya Utumizi na Mambo ya Kukusudiwa
6.1 Saketi ya Kawaida ya Utumizi
Mzunguko wa kuendesha kisambazaji:Mzunguko rahisi zaidi ni upinzani wa kudhibiti mkondo. Kwa uendeshaji wa msukumo, tumia transistor (BJT au MOSFET) kudhibiti mkondo mkubwa. Kiongozi lazima uweze kutoa kilele cha mkondo (hadi 2A) na kuwa na kushuka kwa shinikizo la chini, ili kuongeza kiwango cha juu cha voltage kwenye LED. Kwa usafirishaji wa data, inahitaji wakati wa kupanda/kushuka haraka.
Mzunguko wa kugundua:When used as a photodiode (if applicable according to the model), it typically operates in reverse bias or photovoltaic (zero-bias) mode, connected to a transimpedance amplifier to convert small photocurrents into usable voltages.
6.2 Mambo Muhimu ya Kukusudiwa
- Current Limiting:Tumia daima upinzani wa mfululizo au kichocheo cha mkondo thabiti cha kazi. Usiunganishe moja kwa moja kwenye chanzo cha voltage.
- Uendeshaji wa msukumo:Kwa uendeshaji wa msukumo, hakikisha upana wa msukumo na uwiano wa wajibu huzuia matumizi ya wastani ya nguvu ndani ya mipaka. Mkondo wa wastani = mkondo wa kilele * uwiano wa wajibu. Kwa msukumo wa 2A wenye upana wa 10µs na 300pps, uwiano wa wajibu = (10e-6 * 300) = 0.003 (0.3%). Mkondo wa wastani = 2A * 0.003 = 6mA, ambayo iko ndani kabisa ya viwango vya mfululizo.
- Mwendo wa mwanga:Fikiria pembe ya maono ya digrii 40. Kwa boriti iliyolenga, lenzi inaweza kuhitajika. Kwa ukaguzi wa eneo pana, pembe hiyo inaweza kutosha. Weka mwanga njia isiwe na vizuizi na iwe safi.
- Upinzani wa usumbufu wa mwanga wa mazingira:Katika matumizi ya kigunduzi, mwanga wa infrared wa mazingira (kutoka jua, taa) ndio chanzo kikuu cha kelele. Kutumia ishara ya infrared iliyorekebishwa (k.m. 38kHz) na saketi ya kupokea iliyolengwa inafaa ni njia ya kawaida ya kukandamiza kelele hiyo ya DC na ya masafa ya chini.
- PCB Layout:For the transmitter, ensure sufficient trace width to handle the peak pulse current without excessive voltage drop. For thermal management, connect the flange (if electrically isolated or connected to the pin) to a copper foil area on the PCB as a heat sink.
7. Ulinganishi wa Kiufundi na Tofauti
Ingawa hakutajwa aina maalum za ushindani, mchanganyiko wa vigezo vya LTE-3273L unaweka msimamo wake wazi:
- Ikilinganishwa na diodi ya kawaida ya utoaji wa infrared ya 940nm:Kipimo chake cha juu cha mkondo wa kilele (2A) na nguvu ya juu ya mnururisho kwenye 100mA, hukitofautisha na aina za nguvu ya chini zinazotumiwa kwenye vifaa rahisi vya udhibiti wa mbali. Hii hukifanya kifaa hiki kufaa kwa matumizi yanayohitaji masafa marefu zaidi au upinzani wa kelele za juu.
- Ikilinganisha na diodi ya infrared ya 850nm ya kasi ya juu:LTE-3273L hutumia nyenzo za GaAs na hufanya kazi kwenye 940nm, wakati aina za kasi ya juu kwa kawaida hutumia nyenzo za AlGaAs na hufanya kazi kwenye 850nm. Vifaa vya 850nm kwa kawaida vina wakati wa kupanda/kushuka kwa haraka zaidi kwa ajili ya data ya kasi ya juu, lakini huenda vikatoa mwanga mdogo wa nyekundu. Vifaa vya 940nm havionekani kabisa, jambo linalopendelea kwa matumizi ya siri, na upana wake wa nusu ya urefu wa 50nm ni thamani ya kawaida.
- Ikilinganisha na fototransistor/fotodiode yenye ufungashaji sawa:Kichwa cha maelezo ya maelezo kinaonyesha kuwa mfululizo huu unajumuisha vifaa vya kutuma na vifaa vya kugundua. Toleo maalum la kigunduzi cha mwanga litakuwa na sifa tofauti (usikivu, mkondo wa giza, kasi). Faida kuu ya jozi zinazolingana kutoka kwa mfululizo sawa ni kwamba inawezekana kufikia ulinganifu bora wa wigo.
8. Maswali Yanayoulizwa Mara kwa Mara (Kulingana na Vigezo vya Kiufundi)
Q1: Naweza kutumia mkondo wa 500mA kuendesha LED hii kwa mfululizo?
A: No. The absolute maximum rating for continuous forward current is 100mA. The 500mA condition listed in the electrical characteristics table is for measuring V under high current.F Test conditions may be related to its pulse operation ratings. Continuous operation must not exceed 100mA.
Q2: Kwa nini kifaa changu cha kudhibiti kwa mionzi ya infrared kina umbali mfupi ndani ya gari lenye joto kali?
A: Tafadhali rejea kwenye Mchoro 4 (Uzito wa Mionzi ya Jamaa dhidi ya Joto la Mazingira). Pato la LED hupungua kadri joto linavyoongezeka. Katika +85°C, pato linaweza kuwa chini kwa 30-40% ikilinganishwa na joto la kawaida, na hii inapunguza moja kwa moja umbali unaofaa.
Q3: Unapotumia chanzo cha umeme cha 3.3V, upinzani wa ukubwa gani ninapaswa kutumia ili kupata pato la kawaida?
A: Kwa lengo la IF kuwa 20mA (inazalisha 5.6-8.0 mW/sr), na kwa kawaida V ya 50mAF kuwa 1.6V (kwa 20mA, makadirio ya kutumia takriban 1.5V), R = (3.3V - 1.5V) / 0.02A = 90 ohms. Thamani ya kawaida iliyo karibu zaidi ni 91 ohms. Nguvu katika upinzani: (0.02^2)*91 = 0.0364W, kwa hivyo upinzani wa 1/8W au 1/10W utatosha.
Q4: Je, mtazamo wa utoaji na ugunduzi ni sawa?
A: Kwa kiutao miale ya infrared (LED), pembe ya 40° inabainisha muundo wa utoaji. Kwa kigunduzi cha photodiode au phototransistor, kigezo kinachofanana lakini kimoja kinachoitwa "pembe ya uwanja wa maono" au "pembe ya usikivu" kitafafanua anuwai ya pembe inayokubalika. Kwa kawaida hufanana lakini si lazima ziwe sawa kabisa. Tafadhali angalia hati maalum ya maelezo ya kigunduzi.
9. Practical Design and Usage Cases
Kesi: Kubuni kifaa cha kuzindua mlango wa karakana kutoka umbali mrefu.
Lengo la kubuni ni kufikia umbali wa mita 50 unaotegemeka chini ya hali ya mwanga wa mchana. LTE-3273L ilichaguliwa kwa sababu ya uwezo wake wa juu wa kutoa msukumo.
Hatua za Kubuni:
1. Saketi ya kuendesha:Tumia MOSFET inayoongozwa na kudhibitiwa na microcontroller kudhibiti LED kwa mfululizo. Hesabu upinzani wa mfululizo kulingana na voltage ya betri (k.m. 12V) na mkondo wa kilele unaohitajika. Ili kuongeza umbali wa juu, endesha karibu na kiwango cha kilele: chagua IFP= 1.5A (within the maximum of 2A). V at 1.5AF(Extrapolated from the curve) approximately 2.5V. Resistance R = (12V - 2.5V) / 1.5A = 6.33 ohms. Use a 6.2 ohm, 5W resistor to handle the pulse power (P = I2R = 1.5^2 * 6.2 ≈ 14W peak, but the average power is very low).
2. Pulse modulation:Commands are encoded using a 38kHz carrier modulated by data bits. The pulse width of each 38kHz burst is kept at 10µs or less to stay within the rating. The duty cycle is very low.
3. Optical:Ongeza lenzi rahisi ya plastiki mbele ya LED, ili kusawazisha mwanga wa asili wa digrii 40 kuwa mwanga mwembamba na uliolengwa zaidi, kwa umbali wa mbali zaidi.
4. Usimamizi wa joto:Kwa sababu ya uwiano mdogo wa wakati wa kuwashwa, nguvu ya wastani na uzalishaji wa joto ni ndogo sana. Haifai radiator maalum, isipokuwa sehemu ya shaba ya PCB inayounganishwa kwenye flange.
Muundo huu unatumia sifa muhimu za LTE-3273L: mkondo wa kilele cha juu, nguvu ya mionzi ya juu, na ufanisi kwa operesheni ya mipigo.
10. Brief Introduction to Working Principles
Infrared Emitter (IRED):Wakati inatumika kama kizindua, LTE-3273L ni LED inayotokana na nyenzo ya semikondukta ya GaAs. Unapotumia voltage ya mbele, elektroni na mashimo huingizwa kwenye eneo lenye uwezo la makutano ya semikondukta. Wakati vibeba hivi vinaungana tena, hutoa nishati kwa namna ya fotoni (mwanga). Nishati maalum ya pengo la bendi ya nyenzo ya GaAs huamua urefu wa wimbi la fotoni hizi, ambayo ni eneo la infrared la nanomita 940. Ufungaji unaoonekana huruhusu mwanga huu kutoka kwa hasara ndogo.
Kigunduzi cha Infrared (Photodiode):Ikiwa imesanidiwa kama kigunduzi, kifaa hiki kina makutano ya semikondukta ya PIN. Wakati fotoni zenye nishati kubwa kuliko pengo la bendi la semikondukta (yaani, mwanga wa infrared) zinapogonga eneo la kukauka, huzalisha jozi za elektroni na mashimo. Vibeba hivi kisha hutenganishwa na uwanja wa umeme uliowekwa ndani (au voltage ya nyuma iliyotumika), na kuzalisha mkondo wa mwanga unaolingana na nguvu ya mwanga unaoingia. Mkondo huu mdogo unaweza kuongezwa na kusindika na sakiti ya nje.
11. Mwelekeo wa Kiufundi na Usuli
Vipengele tofauti vya infrared kama LTE-3273L vinawakilisha teknolojia iliyokomaa na thabiti. Nyenzo za msingi (GaAs, AlGaAs) na aina za ufungaji zimeboreshwa kwa miongo kadhaa ili kufikia uaminifu na ufanisi wa gharama. Mwenendo unaoendelea katika uwanja huu sio mabadiliko ya mapinduzi katika vifaa tofauti wenyewe, bali ujumuishaji wao na mazingira ya matumizi:
- Ujumuishaji:Kuna mwelekeo wa kuendeleza moduli zilizojumuishwa, ambazo huchanganya vipeperushi, vigunduzi, viendeshaji, vinua-sauti na mantiki ya dijiti (kama vile vifafanuzi vya itifaki maalum) kwenye kifuniko kimoja cha usakinishaji wa uso. Hizi hurahisisha muundo, lakini kwa matumizi ya kitaalamu, huenda zisitoze kiwango sawa cha utengenezaji maalum au uboreshaji wa utendaji kama vipengele tofauti.
- Udogo:Ingawa vifuniko vya kupitia-shimo bado vinavuma kwa sababu ya uthabiti, kuna mahitaji yanayoongezeka kwa toleo dogo la vifaa vya usakinishaji wa uso (SMD) ili kuokoa nafasi kwenye bodi za mzunguko (PCB) za kisasa.
- Uboreshaji wa Utendaji:Kwa matumizi mapya kama vile LiDAR ya vifaa vya matumizi ya kaya au utambuzi wa ishara za mikono wa hali ya juu, vichochezi vya miali ya infrared vinavyofanya kazi kwa kasi na ufanisi zaidi (k.m. kwa kutumia teknolojia ya VCSEL) na vivimbuzi vyenye usikivu wa juu na kelele ndogo zinasomwa. Hata hivyo, kwa matumizi ya kawaida kama vile kifaa cha kudhibiti kwa mbali, kugundua ukaribu na miunganisho ya msingi ya data, vipengele vya jadi kama vile LTE-3273L vinatoa usawa bora zaidi kati ya utendaji, uaminifu na gharama.
- Kupanua Matumizi:Kanuni zake za msingi bado zinatumika kwa vifaa vipya vya Wavuti ya Vitu (IoT), ambavyo vinahitaji mawasiliano rahisi, ya nguvu ndogo ya waya au kugundua, bila utata wa mifumo ya masafa ya redio (RF).
Kwa ufupi, LTE-3273L ni kipengele kilichojengwa kwenye teknolojia imara, na maelezo yake yanayojulikana wazi na ni thabiti. Thamani yake iko katika hati yake ya maelezo wazi na ya kina, inayomwezesha mhandisi kutabiri tabia yake kwa usahihi na kuibuni kwa ufanisi katika mifumo inayohitaji utendakazi wa infrared unaotegemewa kwa udhibiti, kugundua au mawasiliano ya msingi.
Maelezo ya kina ya istilahi za maelezo ya LED.
Maelezo kamili ya istilahi za kiteknolojia za LED.
I. Viashiria Muhimu vya Utendaji wa Kielektroniki na Mwanga
| Istilahi | Unit/Representation | Layman's Explanation | Why It Matters |
|---|---|---|---|
| Ufanisi wa Mwanga (Luminous Efficacy) | lm/W (lumen/watt) | Kiasi cha mwanga kinachotolewa kwa kila wati ya umeme, cha juu zaidi ndivyo kinavyoweka nishati. | Huamua moja kwa moja kiwango cha ufanisi wa nishati ya taa na gharama ya umeme. |
| Luminous Flux | lm (lumen) | Jumla ya kiasi cha mwanga kinachotolewa na chanzo cha mwanga, kinachojulikana kwa kawaida kama "mwangaza". | Kuamua kama taa inatoa mwanga wa kutosha. |
| Pembe ya kuangazia (Viewing Angle) | ° (digrii), kama vile 120° | Pembe wakati ukali wa mwanga unapungua kwa nusu, huamua upana wa boriti ya mwanga. | Huathiri eneo la mwangaza na usawa wake. |
| Joto la rangi (CCT) | K (Kelvin), k.m. 2700K/6500K | Joto la rangi ya mwanga, thamani ya chini inaelekea manjano/joto, thamani ya juu inaelekea nyeupe/baridi. | Huamua mazingira ya taa na matumizi yanayofaa. |
| Kielelezo cha Uonyeshaji Rangi (CRI / Ra) | No unit, 0–100 | The ability of a light source to reproduce the true colors of objects, Ra≥80 is recommended. | Affects color fidelity, used in high-demand places such as shopping malls and art galleries. |
| Tofauti ya uvumilivu wa rangi (SDCM) | Hatua za duaradufu ya MacAdam, k.m. "5-step" | Kipimo cha nambari cha usawa wa rangi, hatua ndogo zaidi inaonyesha usawa mkubwa wa rangi. | Kuhakikisha hakuna tofauti ya rangi kati ya taa za kundi moja. |
| Dominant Wavelength | nm (nanomita), k.m. 620nm (nyekundu) | Thamani ya wavelength inayolingana na rangi ya LED ya rangi. | Amua rangi ya LED za rangi moja kama nyekundu, manjano, kijani, n.k. |
| Spectral Distribution | Wavelength vs. Intensity Curve | Inaonyesha usambazaji wa nguvu ya mwanga unaotolewa na LED katika urefu wa mawimbi tofauti. | Inaathiri ubora wa kuonyesha rangi na ubora wa rangi. |
II. Vigezo vya Umeme
| Istilahi | Ishara | Layman's Explanation | Mambo ya Kuzingatia katika Ubunifu |
|---|---|---|---|
| Voltage ya Mbele (Forward Voltage) | Vf | Voltage ya chini inayohitajika kuwasha LED, kama "kizingiti cha kuanzisha". | Voltage ya chanzo cha umeme inapaswa kuwa ≥ Vf, voltage inajumlishwa wakati LED nyingi zimeunganishwa mfululizo. |
| Forward Current | If | The current value required for the LED to emit light normally. | Mara nyingi hutumia usukumaji wa mkondo wa mara kwa mara, mkondo huamua mwangaza na maisha ya taa. |
| Mkondo wa juu wa msukumo (Pulse Current) | Ifp | Kilele cha mkondo kinachoweza kustahimili kwa muda mfupi, kinachotumika kwa kudimisha au kumulika. | Upana wa msukumo na uwiano wa wakati wa kazi lazima udhibitiwe kwa ukali, vinginevyo kuharibika kwa joto kupita kiasi. |
| Reverse Voltage | Vr | The maximum reverse voltage that an LED can withstand; exceeding it may cause breakdown. | Mzunguko unahitaji kuzuia uunganishaji wa nyuma au mshtuko wa voltage. |
| Thermal Resistance | Rth (°C/W) | Upinzani wa joto kutoka kwenye chip hadi kwenye mwamba wa kuuzi, thamani ya chini inaonyesha usambazaji bora wa joto. | Upinzani wa juu wa joto unahitaji muundo wa nguvu zaidi wa usambazaji joto, vinginevyo joto la kiungo litaongezeka. |
| Electrostatic Discharge Immunity (ESD Immunity) | V (HBM), e.g., 1000V | Uwezo wa kupiga umeme wa tuli, thamani ya juu zaidi haifai kuharibiwa na umeme wa tuli. | Hatua za kinga za umeme wa tuli zinahitajika katika uzalishaji, hasa kwa LED zenye usikivu mkubwa. |
Tatu, Usimamizi wa Joto na Uaminifu
| Istilahi | Viashiria Muhimu | Layman's Explanation | Athari |
|---|---|---|---|
| Joto la Kiungo (Junction Temperature) | Tj (°C) | Joto halisi la uendeshaji ndani ya chip ya LED. | For every 10°C reduction, the lifespan may double; excessively high temperatures lead to lumen depreciation and color shift. |
| Lumen Depreciation | L70 / L80 (saa) | Muda unaohitajika ili mwangaza upunguke hadi 70% au 80% ya thamani ya awali. | Kufafanua moja kwa moja "maisha ya huduma" ya LED. |
| Udumishaji wa Lumen (Lumen Maintenance) | % (k.m. 70%) | Asilimia ya mwangaza uliobaki baada ya kutumia kwa muda fulani. | Inaonyesha uwezo wa kudumisha mwangaza baada ya matumizi ya muda mrefu. |
| Color Shift | Δu′v′ or MacAdam Ellipse | The degree of color change during use. | Inaathiri usawa wa rangi katika mandhari ya taa. |
| Uzeefu wa joto (Thermal Aging) | Kupungua kwa utendaji wa nyenzo | Uharibifu wa nyenzo za ufungaji unaosababishwa na joto la muda mrefu. | Inaweza kusababisha kupungua kwa mwangaza, mabadiliko ya rangi, au kushindwa kwa mzunguko wazi. |
IV. Ufungaji na Nyenzo
| Istilahi | Aina za Kawaida | Layman's Explanation | Sifa na Matumizi |
|---|---|---|---|
| Aina ya Ufungaji | EMC, PPA, Ceramic | Nyenzo za kifuniko zinazolinda chip na kutoa mwingiliano wa mwanga na joto. | EMC ina msimamo mzuri dhidi ya joto na gharama nafuu; kauri ina usambazaji bora wa joto na maisha marefu. |
| Muundo wa chip | Front-side, Flip Chip | Chip Electrode Layout. | Inverted mounting offers better heat dissipation and higher luminous efficacy, making it suitable for high-power applications. |
| Phosphor coating | YAG, silicate, nitride | Coated on the blue LED chip, partially converted to yellow/red light, mixed to form white light. | Different phosphors affect luminous efficacy, color temperature, and color rendering. |
| Lens/Optical Design | Flat, Microlens, Total Internal Reflection | Optical structures on the encapsulation surface control light distribution. | Determines the emission angle and light distribution curve. |
V. Quality Control and Binning
| Istilahi | Bin Content | Layman's Explanation | Purpose |
|---|---|---|---|
| Luminous Flux Binning | Codes such as 2G, 2H | Grouped by brightness level, each group has a minimum/maximum lumen value. | Hakikisha mwangaza wa bidhaa za kundi moja unaolingana. |
| Voltage binning | Codes such as 6W, 6X | Grouped by forward voltage range. | Facilitates driver power matching and improves system efficiency. |
| Color Grading | 5-step MacAdam Ellipse | Group by color coordinates to ensure colors fall within an extremely narrow range. | Ensure color consistency to avoid uneven color within the same luminaire. |
| Color temperature binning | 2700K, 3000K, n.k. | Kugawanya kulingana na joto la rangi, kila kikundi kina anuwai ya kuratibu inayolingana. | Kukidhi mahitaji ya joto tofauti la rangi kwa matukio mbalimbali. |
Sita, Uchunguzi na Uthibitishaji
| Istilahi | Kigezo/Uchunguzi | Layman's Explanation | Maana |
|---|---|---|---|
| LM-80 | Upimaji Udumishaji wa Lumeni | Long-term illumination under constant temperature conditions, recording brightness attenuation data. | Used to estimate LED lifetime (in conjunction with TM-21). |
| TM-21 | Life Projection Standard | Projecting the lifespan under actual operating conditions based on LM-80 data. | Toa utabiri wa kisayansi wa maisha ya taa. |
| IESNA standard | Illuminating Engineering Society Standards | Covers optical, electrical, and thermal test methods. | Industry-recognized testing basis. |
| RoHS / REACH | Uthibitisho wa usawa na mazingira | Hakikisha bidhaa haina vitu hatari (kama risasi, zebaki). | Masharti ya kuingia soko la kimataifa. |
| ENERGY STAR / DLC | Uthibitisho wa Ufanisi wa Nishati | Uthibitisho wa Ufanisi wa Nishati na Utendaji kwa Bidhaa za Taa. | Inatumiwa kwa kawaida katika ununuzi wa serikali na miradi ya ruzuku, kuimarisha ushindani wa soko. |