Table of Contents
- 1. Product Overview
- 1.1 Core Advantages
- 2. In-depth Technical Parameter Analysis
- 2.1 Absolute Maximum Ratings
- 2.2 Electrical and Optical Characteristics
- 3. Mfumo wa Uainishaji Maelezo
- 3.1 Uainishaji wa Mkondo wa Collector ya Kuwasha
- 4. Performance Curve Analysis
- 4.1 Relationship Between Collector Dark Current and Ambient Temperature (Figure 1)
- 4.2 Uhusiano wa Matumizi ya Nguvu ya Collector na Joto la Mazingira (Mchoro 2)
- 4.3 Uhusiano wa Muda wa Kupanda/Kushuka na Upinzani wa Mzigo (Mchoro 3)
- 4.4 Uhusiano wa Sasa ya Kukusanya ya Relatifi na Mwangaza (Mchoro 4)
- 4.5 Mchoro wa Uthibitishaji (Kielelezo 5)
- 5. Taarifa za Mitambo na Ufungaji
- 5.1 Package Dimensions
- 6. Mwongozo wa Uchomeaji na Usanikishaji
- 7. Mapendekezo ya Matumizi
- 7.1 Mandhari ya Kawaida ya Utumiaji
- 7.2 Kuzingatia Katika Ubunifu na Usanidi wa Sakiti
- 8. Technical Comparison and Differentiation
- 9. Maswali Yanayoulizwa Mara kwa Mara (Kulingana na Vigezo vya Kiufundi)
- 9.1 "BIN" code inamaanisha nini? Kwa nini ni muhimu?
- 9.2 Je, naweza kutumia sensor hii pamoja na chanzo cha mwanga kinachoonekana?
- 9.3 Je, pato linabadilishwaje kuwa ishara ya dijiti?
- 9.4 Why is my output unstable in bright, high-temperature environments?
- 10. Uchunguzi wa Kesi Halisi za Ubunifu
- 11. Kanuni ya Uendeshaji
- 12. Mwelekeo wa Teknolojia
1. Product Overview
LTR-209 is a silicon NPN phototransistor specifically designed for infrared detection applications. It features a transparent plastic package and offers high sensitivity to incident light, particularly within the infrared spectrum. Characterized by a wide operating range, high reliability, and cost-effectiveness, this device is suitable for various sensing and detection systems.
1.1 Core Advantages
- Wide Collector Current Range:This device supports a wide range of collector current levels, providing flexibility for circuit design and sensitivity adjustment.
- High Sensitivity Lens:Lens integration enhances the device's sensitivity to incident infrared radiation and improves the signal-to-noise ratio.
- Low-cost plastic packaging:The use of economical plastic packaging reduces the overall system cost.
- Transparent packaging:The transparent housing maximizes the amount of light reaching the active semiconductor area, optimizing performance.
2. In-depth Technical Parameter Analysis
The following section provides a detailed and objective interpretation of the key electrical and optical parameters of the LTR-209 phototransistor.
2.1 Absolute Maximum Ratings
Viwango hivi vinabainisha mipaka ambayo inaweza kusababisha uharibifu wa kudumu wa kifaa. Hakuna uhakikisho wa uendeshaji chini ya hali hizi au kuzizidi.
- Power dissipation (PD):100 mW. This is the maximum power the device can dissipate as heat when the ambient temperature (TA) is 25°C. Exceeding this limit risks thermal runaway and failure.
- Collector-emitter voltage (VMkurugenzi Mtendaji Mkuu):30 V. Voltage ya juu inayoweza kutumiwa kati ya vituo vya kolekta na emita wakati msingi umewazi (mwangaza tu).
- Voltage ya Emita-Kolekta (VECO):5 V. Upeo wa voltage ya nyuma inayoweza kutumiwa kati ya emitter na collector.
- Safu ya joto ya uendeshaji:-40°C hadi +85°C. Kifaa kimeundwa kufanya kazi kwa kawaida ndani ya safu hii ya joto la mazingira.
- Mbalimbali ya joto la uhifadhi:-55°C hadi +100°C. Mbalimbali ya joto la uhifadhi katika hali isiyo ya kufanya kazi na ambayo haisababishi kupungua kwa utendaji.
- Joto la kuunganisha pini:5 sekunde kwenye 260°C kwa umbali wa 1.6mm kutoka kwa mwili wa kifuniko. Hii inafafanua mkunjo wa joto unaokubalika kwa utaratibu wa kuuza kwa mkono au mawimbi.
2.2 Electrical and Optical Characteristics
Vigezo hivi vilipimwa chini ya hali maalum za majaribio ya TA=25°C, na vinafafanua utendaji wa kawaida wa kifaa.
- Collector-emitter breakdown voltage (V(BR)CEO):30 V (min). At zero irradiance (EC= 0 mW/cm²) and IeMeasured under the condition of = 1mA. This confirms the absolute maximum ratings.
- Emitter-collector breakdown voltage (V(BR)ECO):5 V (minimum). At zero irradiance and IEMeasured under the condition of = 100µA.
- Collector-Emitter Saturation Voltage (VCE(SAT)):0.4 V (max). The voltage drop across the device when it is fully "on" (conducting), at IC= 100µA na Ee= 1 mW/cm² hali ya kupima. V ya chiniCE(SAT)Inafaa kupunguza hasara ya nguvu.
- Wakati wa kupanda (Tr) na wakati wa kushuka (Tf):ni 10 µs (kawaida) na 15 µs (kawaida) mtawalia. Vigezo hivi vinabainisha kasi ya kubadili kwa transistor ya fotoelektrini. Katika VCC=5V, IC=1mA, RL=1kΩ conditions. This asymmetry is common in phototransistors.
- Collector dark current (IMkurugenzi Mtendaji Mkuu):100 nA (max). This is when the device is in complete darkness (Ee= 0 mW/cm²) and VCEWhen = 10V, the leakage current flowing from the collector to the emitter. Low dark current is crucial for high-sensitivity applications to minimize noise.
3. Mfumo wa Uainishaji Maelezo
LTR-209 employs a binning system for its key parameter—On-state collector current (IC(ON))—Binning is a quality control process that categorizes components into specific groups or "bins" based on measured performance. This allows designers to select devices with guaranteed performance ranges suitable for their applications.
3.1 Uainishaji wa Mkondo wa Collector ya Kuwasha
IC(ON)Measured under standardized conditions: VCE= 5V, Ee= 1 mW/cm², wavelength (λ) of infrared light source is 940nm. Based on the measured current, the device is categorized into the following bins:
- BIN C:0.8 mA (minimum) to 2.4 mA (maximum)
- BIN D:1.6 mA (minimum) to 4.8 mA (maximum)
- BIN E:3.2 mA (minimum) to 9.6 mA (maximum)
- BIN F:6.4 mA (minimum) — No upper limit specified in this datasheet excerpt.
Design Impact:Saketi iliyoundwa kwa kifaa cha BIN C (mkondo wa chini), ikitumia kifaa cha BIN F (mkondo wa juu) bila upimaji upya, inaweza kushindwa kufanya kazi ipasavyo, na kinyume chake pia ni kweli. Kubainisha msimbo wa kiwango ni muhimu ili kuhakikisha uthabiti wa utendakazi wa mfumo.
4. Performance Curve Analysis
Waraka wa data hutoa mikunjo kadhaa ya sifa, inayoonyesha jinsi vigezo muhimu vinavyobadilika kulingana na hali ya uendeshaji. Hii ni muhimu kwa kuelewa tabia halisi zaidi ya vipimo vya sehemu moja.
4.1 Relationship Between Collector Dark Current and Ambient Temperature (Figure 1)
Mchoro unaonyesha IMkurugenzi Mtendaji Mkuu(Dark current) inaongezeka kwa kasi kwa kielelezo kadiri joto la mazingira (TA) linavyoongezeka. Kwa mfano, kwenye 100°C, mkondo wa giza unaweza kuwa wa viwango kadhaa vya juu zaidi kuliko kwenye 25°C. Hii ni kutokana na tabia ya msingi ya semiconductor inayosababishwa na ongezeko la vibeba malipo vinavyotokana na joto.Mambo ya Kuzingatia Katika Ubunifu:Katika matumizi ya joto la juu, ongezeko la mkondo wa giza linaweza kuwa chanzo kikubwa cha kelele, kinachoweza kuficha ishara dhaifu za mwanga. Inaweza kuhitajika usimamizi wa joto au utengenezaji wa ishara.
4.2 Uhusiano wa Matumizi ya Nguvu ya Collector na Joto la Mazingira (Mchoro 2)
Mkunjo huu wa kupunguza nguvu unaonyesha uhusiano wa kazi kati ya matumizi ya nguvu yanayoruhusiwa kwa kiwango cha juu (PC) na TA. Thamani kamili ya juu ya 100 mW ni halali tu kwa 25°C au chini. Kadiri TAKwa kuongezeka kwa joto, uwezo wa kutoa joto wa kifaa hupungua, kwa hivyo nguvu ya juu inayoruhusiwa lazima ipunguzwe kwa mstari. Katika 85°C (joto la juu la uendeshaji), matumizi ya nguvu yanayoruhusiwa hupungua kwa kiasi kikubwa.Mambo ya Kuzingatia Katika Ubunifu:Usanifu wa saketi lazima uhakikishe kwamba matumizi halisi ya nguvu (VCE* IC) hayazidi thamani ya kupunguzwa kwa nguvu kwenye joto la juu la uendeshaji linalotarajiwa.
4.3 Uhusiano wa Muda wa Kupanda/Kushuka na Upinzani wa Mzigo (Mchoro 3)
Mkunjo huu unaonyesha usawazishaji kati ya kasi ya kubadili na ukubwa wa ishara. Muda wa kupanda (Tr) na muda wa kushuka (Tf) zote huongezeka kadri upinzani wa mzigo (RL) unavyoongezeka. R kubwaLInatoa mwingilio mkubwa wa voltage (ΔV = IC* RL), lakini hupunguza kasi ya mzunguko kwa sababu capacitance ya transistor inahitaji muda mrefu zaidi kupitia upinzani mkubwa kushtakiwa/kutolewa.Mambo ya Kuzingatia Katika Ubunifu:RLThamani ya R lazima ichaguliwe kulingana na kama matumizi yanapendelea kasi ya juu (R ya chiniL) au faida kubwa ya voltage (R ya juu).L) kuchagua.
4.4 Uhusiano wa Sasa ya Kukusanya ya Relatifi na Mwangaza (Mchoro 4)
Mchoro huu unaonyesha uhusiano kati ya sasa ya mkusanyiko iliyosanifiwa na msongamano wa nguvu ya mwanga unaoingia (mwangaza, Ee). Katika safu iliyochorwa (0 hadi takriban 5 mW/cm²) uhusiano huo ni wa mstari. Uwiano huu wa mstari ni sifa muhimu ya fototransistor inayotumika katika matumizi ya kugundua, kwani sasa ya pato inalingana moja kwa moja na nguvu ya mwanga wa pembejeo. Mkunjo huu ulipatikana kwa VCEDrawn under the condition of = 5V.
4.5 Mchoro wa Uthibitishaji (Kielelezo 5)
Although the axes are abbreviated, the "Sensitivity Diagram" typically illustrates the spectral response of the detector. Silicon phototransistors like the LTR-209 are most sensitive to light in the near-infrared region, with a peak around 800-950 nm. This makes them well-suited for use with common infrared emitters (such as LEDs with λ=940nm, as described in the binning test conditions) and for filtering out visible light interference.
5. Taarifa za Mitambo na Ufungaji
5.1 Package Dimensions
This device uses a standard through-hole plastic package. Key dimensional specifications in the datasheet include:
- Vipimo vyote vimepewa kwa milimita (inchi ziko kwenye mabano).
- Isipokuwa imebainishwa vinginevyo, inatumika uvumilivu wa kawaida wa ±0.25mm (±.010").
- Upeo wa juu wa mfinyano wa hariri chini ya flange ni 1.5mm (.059").
- Umbali wa pini hupimwa mahali ambapo pini inatoka kwenye mwili wa kifurushi, jambo muhimu kwa muundo wa pedi za PCB.
Utambuzi wa polarity:Pini ndefu kwa kawaida ni kolekta, pini fupi ni emita. Upande wa gorofa kwenye ukingo wa kifuniko pia unaweza kuonyesha upande wa emita. Hakikisha kurejelea mchoro wa kifuniko kwa uthibitisho.
6. Mwongozo wa Uchomeaji na Usanikishaji
Mwongozo mkuu unaotolewa unatumika kwa kuunganisha kwa mkono au mawimbi: pini zinaweza kustahimili joto la 260°C kwa muda wa sekunde 5, kipimo kinachukuliwa umbali wa 1.6mm (.063") kutoka kwa mwili wa kifuniko. Hii inazuia uharibifu wa joto kwa chipu ya ndani ya semiconductor na kifuniko cha plastiki.
Kwa ufungaji wa reflow:Ingawa haijaainishwa wazi katika hati hii ya data, kifurushi sawa cha plastiki kwa kawaida kinahitaji kufuata mkunjo wa kiwango cha JEDEC (k.m. J-STD-020), na kiwango cha juu cha joto kwa kawaida hakizidi 260°C. Kiwango maalum cha unyevu nyeti (MSL) na mahitaji ya kukaanga hayajatolewa hapa, na yanapaswa kuthibitishwa na mtengenezaji.
Masharti ya uhifadhi:Vifaa vinapaswa kuhifadhiwa katika anga kavu, isiyo na kutu, ndani ya safu ya joto maalum ya -55°C hadi +100°C. Kwa uhifadhi wa muda mrefu, hatua za kuzuia umeme zipendekezwa.
7. Mapendekezo ya Matumizi
7.1 Mandhari ya Kawaida ya Utumiaji
- Object Detection and Proximity Sensing:Used in conjunction with infrared LEDs to detect the presence, absence, or proximity of objects (e.g., in vending machines, printers, industrial automation).
- Slot-Type Sensors and Encoders:Detects the interruption of infrared beams to count objects or measure rotational speed.
- Remote control receiver:Although slower than dedicated photodiodes, they can be used in simple, low-cost infrared receiving circuits.
- Grating na Mfumo wa Usalama:Unda miale isiyoonekana kwa ajili ya kugundua uvamizi.
7.2 Kuzingatia Katika Ubunifu na Usanidi wa Sakiti
The most common circuit configuration isCommon emittermode. The collector of the phototransistor is connected through a load resistor (RCC) Inaunganishwa kwa chanzo cha umeme chanya (VL), emitter imegunduliwa chini. Mwangaza unaoingia husababisha mkondo wa mwanga (IC) kutiririka, na kutoa voltage ya pato (VOUT): VOUT= VCC- (IC* RL). When there is no light, VOUTis at a high level (~VCC). When there is light, VOUT drops.
Key design steps:
- Chagua RL:Kulingana na anuwai ya pato inayohitajika (VCC/IC(ON)) na kasi inayotarajiwa (tazama Mchoro 3). Thamani kati ya 1kΩ hadi 10kΩ ni za kawaida.
- Consider bandwidth:RLThe value, combined with the junction capacitance of the device, forms a low-pass filter. For pulse operation, ensure the circuit's RC time constant is much smaller than the pulse width.
- Manage ambient light:Tumia kichujio cha mwanga (kifuniko cha rangi nyeusi au kinachoruhusu mionzi ya infrared kwenye sensor) ili kuzuia mwanga unaotaka kuzuiwa na kupunguza kelele.
- Urekebishaji wa joto:Kwa kuhisi sahihi ya analog, fikiria utegemezi wa mkondo wa giza kwenye joto (Mchoro 1). Mbinu ni pamoja na kutumia sensor ya kumbukumbu ya giza inayolingana katika usanidi wa tofauti au kutekeleza urekebishaji wa programu.
8. Technical Comparison and Differentiation
Ikilinganishwa na vichunguzi vingine vya mwanga:
- Ikilinganishwa na diodi ya picha:Phototransistors offer inherent current gain (β or hFE), resulting in higher output current at the same light level. This simplifies circuit design as less subsequent amplification is required. However, phototransistors are typically slower than photodiodes (longer rise/fall times) and have a more limited linear range.
- Compared to photodarlingtons:Phototransistor ya Darlington hutoa faida kubwa zaidi kuliko phototransistor ya kawaida, lakini wakati wa kukabiliana ni polepole zaidi, na voltage ya kujaa (VCE(SAT)) pia ni ya juu zaidi. LTR-209 hutoa usawa mzuri kati ya faida, kasi na kushuka kwa voltage.
- Sifa tofauti za LTR-209:其Ufungaji wa uwazi和Lensi iliyojumuishwaNi sababu muhimu ya kutofautisha. Phototransistors nyingi za ushindani hutumia ufungaji wa epoxy nyeusi unaopunguza mwanga. Ufungaji wa uwazi wa LTR-209 unakuza upeo wa hisia, wakati lenzi husaidia kuzingatia mwanga unaoingia kwenye eneo linalofanya kazi, na kuimarisha mwelekeo na nguvu ya ishara.
9. Maswali Yanayoulizwa Mara kwa Mara (Kulingana na Vigezo vya Kiufundi)
9.1 "BIN" code inamaanisha nini? Kwa nini ni muhimu?
BIN code (C, D, E, F) kulingana na IC(ON)) Classify the devices. It is crucial as it ensures a specific performance range. Using a device with the wrong grade may cause insufficient or excessive circuit sensitivity, leading to malfunctions. Be sure to specify the required grade when ordering.
9.2 Je, naweza kutumia sensor hii pamoja na chanzo cha mwanga kinachoonekana?
Although silicon material does respond to visible light, its peak sensitivity lies in the near-infrared region (refer to the implied Figure 5). For optimal performance and to avoid interference from ambient visible light, it is strongly recommended to pair it with an infrared emitter (typically 850nm, 880nm, or 940nm) and use an infrared pass filter on the detector.
9.3 Je, pato linabadilishwaje kuwa ishara ya dijiti?
The simplest method is to connect the output (collector node) to the input of a Schmitt-trigger inverter or a comparator with hysteresis. This converts the analog voltage swing into a clean digital signal, unaffected by noise. The comparator's threshold should be set between the "bright" and "dark" output voltage levels.
9.4 Why is my output unstable in bright, high-temperature environments?
Hii inawezekana kuwa ni kwa sababu ya ushawishi wa pamoja wa mkondo mkubwa wa giza (unaoongezeka kwa joto kulingana na Mchoro 1) na majibu ya mwanga wa mazingira. Suluhisho ni pamoja na: 1) Kuongeza kinga ya kimwili au mfereji ili kupunguza uwanja wa mtazamo, 2) Kutumia chanzo cha mwanga cha infrared kilichorekebishwa na utambuzi wa ulinganifu, 3) Kutekeleza mzunguko wa upendeleo au fidia ulio na utulivu wa joto.
10. Uchunguzi wa Kesi Halisi za Ubunifu
Scene:Design a paper detection sensor for the printer.
Implementation:Place the infrared LED and LTR-209 on opposite sides of the paper path, aligned to form a light beam. When paper is present, it blocks the beam. The phototransistor is configured in common-emitter mode, with RL= 4.7kΩ and VCC= 5V.
Component Selection and Calculation:Chagua kifaa kutoka kwenye BIN D (IC(ON)= 1.6-4.8mA). Wakati hakuna karatasi (mwanga umekamilika), chukulia IC= 3mA (kiwango cha kawaida). VOUT= 5V - (3mA * 4.7kΩ) = 5V - 14.1V = -9.1V. Hii haiwezekani, inamaanisha transistor imejaa. Wakati imejaa, VOUT≈ VCE(SAT)≈ 0.4V (low-level signal). When the paper blocks the light beam, IC≈ IMkurugenzi Mtendaji Mkuu(very small, ~nA), therefore VOUT≈ 5V (high-level signal). The GPIO pin of the microcontroller can directly read this high/low-level signal to detect paper presence. It is recommended to add a decoupling capacitor (e.g., 100nF) between the sensor's power supply pins to filter out noise.
11. Kanuni ya Uendeshaji
Transista ya fotoelektriki ni aina ya transista ya makutano ya bipolar (BJT) ambayo eneo la msingi wake limefunuliwa kwenye mwanga. Fotonimu za mwanga zinazoingia zenye nishati ya kutosha huzalisha jozi za elektroni na shimo kwenye makutano ya msingi-kolekta. Mabebaji haya wa mwanga husafirishwa nje na uga wa umeme wa ndani, kwa ufanisi kuchukua nafasi ya mkondo wa msingi. Kisha, huu "mkondo wa msingi wa optiki" unazidishwa na faida ya mkondo wa transista (hFE), na kuzalisha mkondo mkubwa zaidi wa kolekta. Ukubwa wa mkondo huu wa kolekta ni sawia na ukubwa wa mwanga unaoingia, na hivyo kutoa utendaji wa kuhisi. Ufungaji wa uwazi na lenzi ya LTR-209 huongeza kiwango cha juu cha idadi ya fotonimu zinazofika kwenye makutano nyeti ya semikondukta.
12. Mwelekeo wa Teknolojia
Phototransistors like the LTR-209 represent a mature and cost-effective technology. Current trends in optoelectronics include:
- Integration:Mwelekeo wa ufumbuzi uliojumuishwa, unaounganisha kigunduzi cha mwanga, kikuza sauti, na mantiki ya dijiti (kwa mfano, kizuizi cha mwanga chenye matokeo ya mantiki yaliyojengwa ndani) kwenye chipi moja, hupunguza idadi ya vipengele vya nje na kuboresha ukinzani wa kelele.
- Kifaa Kilichopachikwa kwenye Uso (SMD):Ingawa ufungaji wa tundu la kupita bado una umaarufu katika utengenezaji wa mfano na matumizi fulani, tasnia inaelekea kwa nguvu kwenye ufungaji mdogo wa SMD (kwa mfano SMT-3), ili kufaa kwenye usanidi wa otomatiki na muundo wenye nafasi ndogo.
- Uboreshaji wa Utendaji:Kukuza vifaa vyenye muda wa kujibu wa haraka zaidi, mkondo wa giza uliopunguzwa, na uthabiti wa juu wa joto, ili kukidhi mahitaji magumu zaidi ya matumizi katika sekta ya magari, viwanda, na vifaa vya matumizi ya kawaida.
- Uboreshaji Maalum wa Matumizi:Sensors are being customized for specific wavelengths (e.g., for heart rate monitoring at specific infrared wavelengths) or with built-in daylight filters.
The fundamental operating principle of phototransistors remains valid, and devices like the LTR-209 continue to be a reliable choice for a range of sensing needs, from basic to intermediate, due to their simplicity, robustness, and low cost.
Detailed Explanation of LED Specification Terminology
Kamusi Kamili ya Istilahi za Teknolojia ya LED
I. Viashiria Muhimu vya Utendaji wa Kielektroniki na Mwanga
| Istilahi | Unit/Penulisan | Penjelasan Umum | Kwa nini ni muhimu |
|---|---|---|---|
| Ufanisi wa Mwanga (Luminous Efficacy) | lm/W (lumens per watt) | The luminous flux emitted per watt of electrical power; the higher the value, the more energy-efficient. | Directly determines the energy efficiency rating and electricity cost of the luminaire. |
| Fluxi Mwanga (Luminous Flux) | lm (lumen) | Jumla ya kiasi cha mwanga kinachotolewa na chanzo cha mwanga, kinachojulikana kwa kawaida kama "mwangaza". | Huamua kama taa inatosha kuwa na mwangaza. |
| Pembe ya kuona (Viewing Angle) | ° (degree), e.g., 120° | The angle at which light intensity drops to half, determining the beam width. | Affects the illumination range and uniformity. |
| Joto la rangi (CCT) | K (Kelvin), k.m. 2700K/6500K | Joto la rangi ya mwanga, thamani ya chini huelekea manjano/joto, thamani ya juu huelekea nyeupe/baridi. | Huamua mazingira ya taa na matumizi yanayofaa. |
| Kielelezo cha Uonyeshaji Rangi (CRI / Ra) | Unitless, 0–100 | The ability of a light source to reproduce the true colors of objects, with Ra≥80 being preferable. | Inaathiri usahihi wa rangi, hutumika katika maeneo yenye mahitaji makubwa kama vile maduka makubwa, makumbusho ya sanaa. |
| Tofauti ya uvumilivu wa rangi (SDCM) | Idadi ya hatua za duaradufu ya MacAdam, kama vile "5-step" | A quantitative indicator of color consistency; a smaller step number indicates better color consistency. | Ensure no color variation among luminaires from the same batch. |
| Wavelengthu Kuu (Dominant Wavelength) | nm (nanomita), k.m. 620nm (nyekundu) | Thamani ya wavelength inayolingana na rangi ya LED ya rangi. | Determines the hue of monochromatic LEDs such as red, yellow, and green. |
| Spectral Distribution | Wavelength vs. Intensity Curve | Shows the intensity distribution of light emitted by an LED across various wavelengths. | Affects color rendering and color quality. |
Vigezo vya Umeme
| Istilahi | Ishara | Penjelasan Umum | Design Considerations |
|---|---|---|---|
| Forward Voltage | Vf | Voltage ya chini inayohitajika kuwasha LED, kama "kizingiti cha kuanzisha". | Voltage ya chanzo cha usukumaji lazima iwe ≥ Vf, voltage inajumlishwa wakati LED nyingi zimeunganishwa mfululizo. |
| Forward Current | If | The current value that enables the LED to emit light normally. | Inatumika kwa kawaida kuendesha kwa mkondo wa kudumu, mkondo huamua mwangaza na maisha ya huduma. |
| Maximum Pulse Current | Ifp | Peak current that can be sustained for a short period, used for dimming or flashing. | Pulse width and duty cycle must be strictly controlled, otherwise overheating damage will occur. |
| Reverse Voltage | Vr | Upeo wa juu wa voltage ya nyuma ambayo LED inaweza kustahimili, ukizidi huo unaweza kusababisha kuvunjika. | Mzunguko unahitaji kuzuia uunganishaji wa kinyume au mshtuko wa voltage. |
| Thermal Resistance | Rth (°C/W) | Upinzani wa joto kutoka kwenye chip hadi kwenye sehemu ya kuuza, thamani ya chini inaonyesha usambazaji bora wa joto. | Upinzani mkubwa wa joto unahitaji muundo wa upoaji joto wenye nguvu zaidi, vinginevyo joto la kiungo litaongezeka. |
| Uvumilivu wa kutokwa na umeme tuli (ESD Immunity) | V (HBM), kama vile 1000V | Uwezo wa kupiga umeme tuli, thamani ya juu zaidi inamaanisha uwezo mdogo wa kuharibiwa na umeme tuli. | Hatua za kinga dhidi ya umeme tuli zinahitajika katika uzalishaji, hasa kwa LED zenye usikivu mkubwa. |
III. Usimamizi wa Joto na Uaminifu
| Istilahi | Viashiria Muhimu | Penjelasan Umum | Athari |
|---|---|---|---|
| Joto la Kiungo (Junction Temperature) | Tj (°C) | Halisi ya joto la kufanya kazi ndani ya chip ya LED. | Kupunguza kila 10°C kunaweza kuongeza maisha mara mbili; joto la juu sana husababisha kupungua kwa mwanga na kuteleza kwa rangi. |
| Kupungua kwa Mwanga (Lumen Depreciation) | L70 / L80 (saa) | Muda unaohitajika kwa mwangaza kupungua hadi 70% au 80% ya thamani ya awali. | Kufafanua moja kwa moja "maisha ya huduma" ya LED. |
| Kiwango cha Kudumisha Lumini (Lumen Maintenance) | % (kama 70%) | Asilimia ya mwangaza uliobaki baada ya kutumia kwa muda fulani. | Inaonyesha uwezo wa kudumisha mwangaza baada ya matumizi ya muda mrefu. |
| Mabadiliko ya Rangi (Color Shift) | Δu′v′ au Duaradufu ya MacAdam | Kiwango cha mabadiliko ya rangi wakati wa matumizi. | Inaathiri usawa wa rangi katika eneo la taa. |
| Uzeefu wa joto (Thermal Aging) | Deterioration of material properties. | Degradation of packaging materials due to prolonged high temperatures. | May lead to decreased brightness, color shift, or open-circuit failure. |
Nne. Ufungaji na Nyenzo
| Istilahi | Aina za Kawaida | Penjelasan Umum | Sifa na Matumizi |
|---|---|---|---|
| Aina ya Ufungaji | EMC, PPA, Ceramic | A housing material that protects the chip and provides optical and thermal interfaces. | EMC offers good heat resistance and low cost; ceramics provide superior heat dissipation and long lifespan. |
| Chip Architecture | Face-up, Flip Chip | Chip Electrode Layout. | Flip-chip offers better heat dissipation and higher luminous efficacy, suitable for high-power applications. |
| Phosphor coating | YAG, silicates, nitrides | Coated on the blue LED chip, partially converted to yellow/red light, mixed to form white light. | Different phosphors affect luminous efficacy, color temperature, and color rendering. |
| Lens / Usanifu wa Optics | Uso wa gorofa, microlens, kutafakari kamili | Optical structure on the encapsulation surface, controlling light distribution. | Determines the emission angle and light distribution curve. |
V. Quality Control and Binning
| Istilahi | Yaliyomo ya Uainishaji | Penjelasan Umum | Kusudi |
|---|---|---|---|
| Luminous flux binning | Codes such as 2G, 2H | Grouped by brightness level, each group has a minimum/maximum lumen value. | Ensure consistent brightness within the same batch of products. |
| Voltage binning | Codes such as 6W, 6X | Grouped by forward voltage range. | Facilitates driver power matching and improves system efficiency. |
| Kugawanya kwa makundi kulingana na rangi | 5-step MacAdam ellipse | Group by color coordinates to ensure colors fall within an extremely narrow range. | Ensure color consistency to avoid uneven color within the same luminaire. |
| Color temperature binning | 2700K, 3000K, n.k. | Kugawanya kwa makundi kulingana na joto la rangi, kila kundi kina anuwai maalum ya kuratibu. | Inakidhi mahitaji ya joto la rangi katika mazingira tofauti. |
Sita, Uchunguzi na Uthibitishaji
| Istilahi | Kigezo/Uchunguzi | Penjelasan Umum | Meaning |
|---|---|---|---|
| LM-80 | Lumen Maintenance Test | Long-term operation under constant temperature conditions, recording luminance attenuation data. | Used for estimating LED lifetime (combined with TM-21). |
| TM-21 | Lifetime projection standard | Kutabiri maisha ya taa kwa kutumia data ya LM-80 chini ya hali halisi za matumizi. | Kutoa utabiri wa kisayansi wa maisha ya taa. |
| IESNA standard | Illuminating Engineering Society Standard | Covers optical, electrical, and thermal test methods. | Msingi wa majaribio unaokubalika katika tasnia. |
| RoHS / REACH | Uthibitisho wa kiwango cha mazingira | Hakikisha bidhaa hazina vitu hatari (kama risasi, zebaki). | Masharti ya kuingia kwenye soko la kimataifa. |
| ENERGY STAR / DLC | Energy Efficiency Certification | Energy efficiency and performance certification for lighting products. | Commonly used in government procurement and subsidy programs to enhance market competitiveness. |