Chagua Lugha

SMD LED ya Kijani Manjano Yenye Pembe ya Kutazama ya Digrii 120 - Vipimo vya Kifurushi - Voltage ya Mbele 2.0V Kawaida - Kupoteza Nguvu 72mW - Waraka wa Kiufundi wa Kiswahili

Waraka wa kiufundi wa SMD LED iliyotawanyika ya kijani manjano. Inajumuisha maelezo ya kina ya ukubwa wa mwanga, pembe ya kutazama, voltage ya mbele, safu za kugawa, vipimo vya kifurushi, na maelekezo ya ununuzi.
smdled.org | PDF Size: 0.5 MB
Ukadiriaji: 4.5/5
Ukadiriaji Wako
Umeshakadiria hati hii
Kifuniko cha Hati ya PDF - SMD LED ya Kijani Manjano Yenye Pembe ya Kutazama ya Digrii 120 - Vipimo vya Kifurushi - Voltage ya Mbele 2.0V Kawaida - Kupoteza Nguvu 72mW - Waraka wa Kiufundi wa Kiswahili

1. Muhtasari wa Bidhaa Hati hii inaelezea kwa kina vipimo vya Kifaa cha Kufungia Juu ya Uso (SMD) cha Taa ya Kutoa Mwanga (LED) kinachotumia lenzi iliyotawanyika na nyenzo ya semiconductor ya AlInGaP (Aluminium Indium Gallium Phosphide) ili kutoa mwanga wa kijani manjano. Kifaa hiki kimeundwa kwa michakato ya usanikishaji wa bodi ya mzunguko wa kuchapishwa (PCB) ya kiotomatiki, na hivyo kufaa kwa uzalishaji wa wingi. Ukubwa wake mdogo na uwezo wa kufaa na vifaa vya kawaida vya kuweka SMD hufaa kwa matumizi yenye nafasi ndogo katika sekta mbalimbali za elektroniki.

1.1 Vipengele na Faida Muhimu Uzingatiaji: Bidhaa hii inazingatia kanuni za mazingira (k.m., RoHS). Ufungaji: Inasambazwa kwenye tepi ya kawaida ya 8mm kwenye reeli yenye kipenyo cha inchi 7, na hurahisisha shughuli za kiotomatiki za kuchukua na kuweka. Uwezo wa Kufaa na Michakato: Inafaa kabisa na vifaa vya kiotomatiki vya kuweka na michakato ya ununuzi wa IR reflow inayotumika kwa kawaida katika laini za usanikishaji wa teknolojia ya kufungia juu ya uso (SMT). Mwingiliano wa Umeme: Inafaa na I.C. (Mzunguko Uliounganishwa), na huruhusu kuendeshwa moja kwa moja kutoka kwa matokeo ya kiwango cha mantiki na kizuizi cha sasa kinachofaa. Uaminifu: Imepitishwa kwenye majaribio ya utayarishaji yaliyoharakishwa hadi viwango vya JEDEC Level 3 ili kuhakikisha uthabiti dhidi ya msongo unaosababishwa na unyevu wakati wa ununuzi.

1.2 Soko Lengwa na Matumizi LED hii imeundwa kwa aina mbalimbali za vifaa vya elektroniki ambavyo vinahitaji kiashiria cha hali au mwanga thabiti na mkomavu. Maeneo makuu ya matumizi ni pamoja na: Vifaa vya Mawasiliano: Viashiria vya hali kwenye ruta, modem, na simu za mkononi. Otomatiki ya Ofisi: Viashiria vya paneli kwenye printer, nakala, na skana. Elektroniki za Matumizi ya Kaya na Vifaa vya Nyumbani: Viashiria vya nguvu, hali, au kazi. Vifaa vya Viwanda: Ishara za hali ya mashine, hitilafu, au hali ya uendeshaji. Kiashiria cha Jumla: Mwanga wa nyuma wa paneli ya mbele kwa alama, picha, au taa za hali za jumla.

Wavelength ya Kilele ya Utoaji (λP): Takriban 575 nm. Hii ndiyo wavelength kwenye sehemu ya juu kabisa ya wigo wa utoaji wa mwanga.

Wavelength Kuu (λd): Takriban 571 nm (kawaida). Hii ndiyo wavelength moja inayoonwa na jicho la binadamu ambayo inafafanua rangi ya LED, inayotokana na viwianishi vya rangi vya CIE. Hii ndiyo kigezo muhimu cha kubainisha rangi.

Safu P2: 56.0 – 71.0 mcd

Safu Q1: 71.0 – 90.0 mcd

Safu Q2: 90.0 – 112.0 mcd

Safu R1: 112.0 – 140.0 mcd

4.2 Ukubwa wa Mwanga dhidi ya Sasa ya Mbele Ukubwa wa mwanga ni takriban sawia na sasa ya mbele ndani ya safu ya uendeshaji. Kufanya kazi juu ya sasa ya DC inayopendekezwa (20mA) kunaweza kuongeza mwangaza lakini pia itaongeza joto la makutano, na kwa uwezekano kupunguza maisha ya huduma na kusababisha mabadiliko ya rangi.

4.3 Utegemezi wa Joto Utendaji wa LED unategemea joto. Kwa kawaida, voltage ya mbele hupungua kwa kuongezeka kwa joto, wakati ukubwa wa mwanga pia hupungua. Kufanya kazi kwenye kikomo cha juu cha safu ya joto (85°C) kutasababisha utoaji wa mwanga mdogo ikilinganishwa na uendeshaji kwa 25°C.

10. Kanuni za Uendeshaji na Mazingira ya Teknolojia 10.1 Teknolojia ya Semiconductor ya AlInGaP LED hii inatumia nyenzo ya semiconductor ya Aluminium Indium Gallium Phosphide (AlInGaP). Mfumo huu wa nyenzo ni wenye ufanisi sana katika kutoa mwanga katika maeneo ya amber, manjano, na kijani ya wigo unaoonekana. Ikilinganishwa na teknolojia za zamani, LED za AlInGaP hutoa mwangaza wa juu, ufanisi bora, na uthabiti bora wa joto.

10.2 Kazi ya Lenzi Iliyotawanyika Lenzi iliyotawanyika (isiyo wazi) ina chembe zinazotawanyisha zinazochanganya mwanga unaotolewa kutoka kwa chip ndogo ya semiconductor. Mchakato huu hupanua pembe ya kutazama (hadi digrii 120) na huunda muonekano wa laini na sawa zaidi kwa kuondoa "sehemu ya moto" ya mwangaza inayoonwa kwa kawaida katika LED zenye lenzi wazi. Hii ni bora kwa matumizi ambapo LED inatazamwa moja kwa moja.

.1 Forward Voltage (Vf) Binning

LEDs are categorized based on their forward voltage drop at 20mA. This helps in designing power supplies and ensuring uniform brightness when multiple LEDs are connected in parallel.

Tolerance within each bin is ±0.1V.

.2 Luminous Intensity (Iv) Binning

This is the primary binning for brightness. Parts are sorted into groups with defined minimum and maximum luminous intensity values.

Tolerance on each intensity bin is ±11%.

.3 Dominant Wavelength (Wd) Binning

This binning ensures color consistency. LEDs are grouped by their dominant wavelength, which directly correlates to the perceived hue.

Tolerance for each wavelength bin is ±1 nm.

. Performance Curve Analysis

While specific graphs are referenced in the datasheet, their implications are critical for design.

.1 Current vs. Voltage (I-V) Characteristic

The I-V curve for an LED is exponential. The typical forward voltage (2.0V) is specified at 20mA. Designers must use a current-limiting resistor or constant-current driver to ensure the operating point remains stable, as a small change in voltage can cause a large change in current, potentially exceeding maximum ratings.

.2 Luminous Intensity vs. Forward Current

Luminous intensity is approximately proportional to forward current within the operating range. Operating above the recommended DC current (20mA) may increase brightness but will also increase junction temperature, potentially reducing lifespan and causing color shift.

.3 Temperature Dependence

LED performance is temperature-sensitive. Typically, forward voltage decreases with increasing temperature, while luminous intensity also decreases. Operating at the upper limit of the temperature range (85°C) will result in lower light output compared to operation at 25°C.

. Mechanical and Packaging Information

.1 Device Dimensions and Polarity

The LED package has specific physical dimensions critical for PCB footprint design. The datasheet includes a detailed dimensional drawing. Polarity is indicated by a cathode mark (typically a notch, green dot, or other marking on the package). Correct orientation is essential for circuit operation.

.2 Recommended PCB Pad Design

A land pattern (footprint) is provided for the PCB. Adhering to this recommended pad layout is crucial for achieving reliable solder joints during reflow soldering, ensuring proper mechanical attachment and thermal dissipation.

.3 Tape and Reel Packaging Specifications

The device is supplied in embossed carrier tape with a protective cover tape, wound onto 7-inch (178mm) diameter reels. Key specifications include:

. Soldering and Assembly Guidelines

.1 IR Reflow Soldering Profile (Pb-Free)

A suggested temperature profile compliant with J-STD-020B is provided for lead-free solder processes. Key parameters include:

Note:The exact profile must be characterized for the specific PCB assembly, considering board thickness, component density, and solder paste used.

.2 Hand Soldering

If hand soldering is necessary, extreme care must be taken:

.3 Cleaning

If post-solder cleaning is required, only specified solvents should be used to avoid damaging the LED's plastic lens and package. Recommended agents include ethyl alcohol or isopropyl alcohol. The LED should be immersed at normal temperature for less than one minute.

. Storage and Handling Cautions

.1 Moisture Sensitivity

The LED package is moisture-sensitive. Prolonged exposure to ambient humidity can lead to popcorn cracking during reflow soldering.

.2 Drive Method

LEDs are current-operated devices. To ensure uniform brightness when connecting multiple LEDs, they should be driven with a constant current source. Connecting LEDs directly in parallel with a single voltage source and resistor is not recommended due to variations in forward voltage (Vf) between individual devices, which can lead to significant differences in current and, consequently, brightness. A series connection with an appropriate current-limiting resistor or the use of individual resistors for each parallel LED is preferred.

. Application Notes and Design Considerations

.1 Current Limiting

Always use a series resistor or constant-current driver to set the forward current to the desired value (e.g., 20mA). The resistor value can be calculated using Ohm's Law: R = (Vsupply - Vf_LED) / I_desired. Use the maximum Vf from the datasheet (2.4V) for a conservative design to ensure the current does not exceed limits even with a low-Vf LED.

.2 Thermal Management

While the power dissipation is low (72mW), effective thermal management on the PCB can help maintain performance and longevity, especially in high ambient temperature environments or when driving at higher currents. Ensuring a good thermal connection from the LED pads to the PCB copper can help dissipate heat.

.3 Optical Design

The 120-degree viewing angle and diffused lens provide a wide, soft light emission. This makes the LED suitable for applications requiring even illumination over an area or where the indicator needs to be visible from a wide range of angles, without the need for secondary optics like light pipes in many cases.

. Frequently Asked Questions (Based on Technical Parameters)

.1 What is the difference between Peak Wavelength and Dominant Wavelength?

Peak Wavelength (λP) is the physical wavelength at the highest intensity point in the LED's emission spectrum. Dominant Wavelength (λd) is a calculated value based on human color perception (CIE coordinates) that represents the single wavelength of the perceived color. For design purposes, especially regarding color matching, the Dominant Wavelength and its binning are more relevant.

.2 Can I drive this LED at 30mA continuously?

While the Absolute Maximum Rating for DC Forward Current is 30mA, the Electro-Optical Characteristics are specified at 20mA. Operating at 30mA continuously will generate more heat, potentially reducing luminous efficiency and lifespan. For reliable long-term operation, it is advisable to design for a current at or below the typical test condition of 20mA.

.3 How do I interpret the binning codes when ordering?

You must specify the desired bin codes for Vf, Iv, and Wd based on your application's requirements for voltage consistency, brightness level, and color point. For example, an order might specify bins D3 (Vf), R1 (Iv), and D (Wd) to get parts with medium voltage, high brightness, and a specific yellow-green hue.

. Operational Principles and Technology Context

.1 AlInGaP Semiconductor Technology

This LED uses an Aluminum Indium Gallium Phosphide (AlInGaP) semiconductor material. This material system is highly efficient for producing light in the amber, yellow, and green regions of the visible spectrum. Compared to older technologies, AlInGaP LEDs offer higher brightness, better efficiency, and improved temperature stability.

.2 Diffused Lens Function

The diffused (non-clear) lens contains scattering particles that mix the light emitted from the small semiconductor chip. This process broadens the viewing angle (to 120 degrees) and creates a more uniform, softer appearance by eliminating the bright "hot spot" typically seen in LEDs with clear lenses. This is ideal for applications where the LED is viewed directly.

Istilahi ya Mafanikio ya LED

Maelezo kamili ya istilahi za kiufundi za LED

Utendaji wa Fotoelektriki

Neno Kipimo/Uwakilishaji Maelezo Rahisi Kwa Nini Muhimu
Ufanisi wa Mwanga lm/W (lumen kwa watt) Pato la mwanga kwa watt ya umeme, juu zaidi inamaanisha ufanisi zaidi wa nishati. Moja kwa moja huamua daraja la ufanisi wa nishati na gharama ya umeme.
Mtiririko wa Mwanga lm (lumen) Jumla ya mwanga unaotolewa na chanzo, kwa kawaida huitwa "mwangaza". Huamua ikiwa mwanga ni mkali wa kutosha.
Pembe ya Kutazama ° (digrii), k.m., 120° Pembe ambayo ukali wa mwanga hupungua hadi nusu, huamua upana wa boriti. Husaidiana na anuwai ya taa na usawa.
Joto la Rangi K (Kelvin), k.m., 2700K/6500K Uzito/baridi ya mwanga, thamani za chini ni za manjano/moto, za juu ni nyeupe/baridi. Huamua mazingira ya taa na matukio yanayofaa.
Kiwango cha Kurejesha Rangi Hakuna kipimo, 0–100 Uwezo wa kuonyesha rangi za vitu kwa usahihi, Ra≥80 ni nzuri. Husaidiana na ukweli wa rangi, hutumiwa katika maeneo yenye mahitaji makubwa kama vile maduka makubwa, makumbusho.
UVumilivu wa Rangi Hatua za duaradufu za MacAdam, k.m., "hatua 5" Kipimo cha uthabiti wa rangi, hatua ndogo zina maana rangi thabiti zaidi. Inahakikisha rangi sawa katika kundi moja ya LED.
Urefu wa Mawimbi Kuu nm (nanomita), k.m., 620nm (nyekundu) Urefu wa mawimbi unaolingana na rangi ya LED zenye rangi. Huamua rangi ya LED nyekundu, ya manjano, ya kijani kibichi zenye rangi moja.
Usambazaji wa Wigo Mkondo wa urefu wa mawimbi dhidi ya ukali Inaonyesha usambazaji wa ukali katika urefu wa mawimbi. Husaidiana na uwasilishaji wa rangi na ubora.

Vigezo vya Umeme

Neno Ishara Maelezo Rahisi Vizingatiaji vya Uundaji
Voltage ya Mbele Vf Voltage ya chini kabisa kuwasha LED, kama "kizingiti cha kuanza". Voltage ya kiendeshi lazima iwe ≥Vf, voltage huongezeka kwa LED zinazofuatana.
Mkondo wa Mbele If Thamani ya mkondo wa uendeshaji wa kawaida wa LED. Kwa kawaida kuendesha kwa mkondo wa mara kwa mara, mkondo huamua mwangaza na muda wa maisha.
Mkondo wa Pigo wa Juu Ifp Mkondo wa kilele unaoweza kustahimili kwa muda mfupi, hutumiwa kwa kudhoofisha au kumulika. Upana wa pigo na mzunguko wa kazi lazima udhibitiwe kwa ukali ili kuzuia uharibifu.
Voltage ya Nyuma Vr Voltage ya juu ya nyuma ambayo LED inaweza kustahimili, zaidi ya hapo inaweza kusababisha kuvunjika. Mzunguko lazima uzuie muunganisho wa nyuma au mipigo ya voltage.
Upinzani wa Moto Rth (°C/W) Upinzani wa uhamishaji wa joto kutoka chip hadi solder, chini ni bora. Upinzani wa juu wa moto unahitaji upotezaji wa joto wa nguvu zaidi.
Kinga ya ESD V (HBM), k.m., 1000V Uwezo wa kustahimili utokaji umeme, juu zaidi inamaanisha hatari ndogo. Hatua za kuzuia umeme zinahitajika katika uzalishaji, hasa kwa LED nyeti.

Usimamizi wa Joto na Uaminifu

Neno Kipimo Muhimu Maelezo Rahisi Athari
Joto la Makutano Tj (°C) Joto halisi la uendeshaji ndani ya chip ya LED. Kila kupungua kwa 10°C kunaweza kuongeza muda wa maisha maradufu; juu sana husababisha kupungua kwa mwanga, mabadiliko ya rangi.
Upungufu wa Lumen L70 / L80 (saa) Muda wa mwangaza kushuka hadi 70% au 80% ya mwanzo. Moja kwa moja hufafanua "muda wa huduma" wa LED.
Matengenezo ya Lumen % (k.m., 70%) Asilimia ya mwangaza uliobakizwa baada ya muda. Inaonyesha udumishaji wa mwangaza juu ya matumizi ya muda mrefu.
Mabadiliko ya Rangi Δu′v′ au duaradufu ya MacAdam Kiwango cha mabadiliko ya rangi wakati wa matumizi. Husaidiana na uthabiti wa rangi katika mandhari ya taa.
Kuzeeka kwa Moto Uharibifu wa nyenzo Uharibifu kutokana na joto la juu la muda mrefu. Kunaweza kusababisha kupungua kwa mwangaza, mabadiliko ya rangi, au kushindwa kwa mzunguko wazi.

Ufungaji na Vifaa

Neno Aina za Kawaida Maelezo Rahisi Vipengele na Matumizi
Aina ya Kifurushi EMC, PPA, Kauri Nyenzo ya nyumba zinazolinda chip, zinazotoa kiolesura cha macho/moto. EMC: upinzani mzuri wa joto, gharama nafuu; Kauri: upotezaji bora wa joto, maisha marefu.
Muundo wa Chip Mbele, Chip ya Kugeuza Upangaji wa elektrodi za chip. Chip ya kugeuza: upotezaji bora wa joto, ufanisi wa juu, kwa nguvu ya juu.
Mipako ya Fosforasi YAG, Siliketi, Nitradi Inafunika chip ya bluu, inabadilisha baadhi kuwa manjano/nyekundu, huchanganya kuwa nyeupe. Fosforasi tofauti huathiri ufanisi, CCT, na CRI.
Lensi/Optiki Tambaa, Lensi Ndogo, TIR Muundo wa macho juu ya uso unaodhibiti usambazaji wa mwanga. Huamua pembe ya kutazama na mkunjo wa usambazaji wa mwanga.

Udhibiti wa Ubora na Uainishaji

Neno Maudhui ya Kugawa Maelezo Rahisi Madhumuni
Bin ya Mtiririko wa Mwanga Msimbo k.m. 2G, 2H Imegawanywa kulingana na mwangaza, kila kikundi kina thamani ya chini/ya juu ya lumen. Inahakikisha mwangaza sawa katika kundi moja.
Bin ya Voltage Msimbo k.m. 6W, 6X Imegawanywa kulingana na anuwai ya voltage ya mbele. Hurahisisha mechi ya kiendeshi, huboresha ufanisi wa mfumo.
Bin ya Rangi Duaradufu ya MacAdam ya hatua 5 Imegawanywa kulingana na kuratibu za rangi, kuhakikisha anuwai nyembamba. Inahakikisha uthabiti wa rangi, huzuia rangi isiyo sawa ndani ya kifaa.
Bin ya CCT 2700K, 3000K n.k. Imegawanywa kulingana na CCT, kila moja ina anuwai inayolingana ya kuratibu. Inakidhi mahitaji tofauti ya CCT ya tukio.

Kupima na Uthibitishaji

Neno Kiwango/Majaribio Maelezo Rahisi Umuhimu
LM-80 Majaribio ya ulinzi wa lumen Mwanga wa muda mrefu kwa joto la kawaida, kurekodi uharibifu wa mwangaza. Inatumika kukadiria maisha ya LED (na TM-21).
TM-21 Kiwango cha makadirio ya maisha Inakadiria maisha chini ya hali halisi kulingana na data ya LM-80. Inatoa utabiri wa kisayansi wa maisha.
IESNA Jumuiya ya Uhandisi wa Taa Inajumuisha mbinu za majaribio ya macho, umeme, joto. Msingi wa majaribio unayotambuliwa na tasnia.
RoHS / REACH Udhibitisho wa mazingira Inahakikisha hakuna vitu vya hatari (risasi, zebaki). Mahitaji ya kuingia kwenye soko kimataifa.
ENERGY STAR / DLC Udhibitisho wa ufanisi wa nishati Udhibitisho wa ufanisi wa nishati na utendaji wa taa. Inatumika katika ununuzi wa serikali, programu za ruzuku, huongeza ushindani.