Chagua Lugha

Taa ya LED ya Kijani ya Kupenyeza Shimo - 525nm - Kipenyo 3.0mm - 2.4-3.3V - 64mW - Waraka wa Kiufundi wa Kiswahili

Waraka kamili wa kiufundi wa taa ya LED ya kijani ya kupenyeza shimo ya 525nm. Inajumuisha sifa za umeme/optiki, viwango vya juu kabisa, maelezo ya kugawanya kwenye makundi, maelezo ya ufungaji, na miongozo ya usanikishaji.
smdled.org | PDF Size: 0.3 MB
Ukadiriaji: 4.5/5
Ukadiriaji Wako
Umeshakadiria hati hii
Kifuniko cha Hati ya PDF - Taa ya LED ya Kijani ya Kupenyeza Shimo - 525nm - Kipenyo 3.0mm - 2.4-3.3V - 64mW - Waraka wa Kiufundi wa Kiswahili

1. Muhtasari wa Bidhaa Hati hii inaelezea kwa kina maelezo ya taa ya LED ya kijani ya kupenyeza shimo iliyoundwa kutumika kwenye kishikio cha pembe-mraba cha plastiki nyeusi (CBI - Kiashiria cha Bodi ya Saketi). Bidhaa hii ni chanzo cha mwanga thabiti kinachotoa matumizi ya nguvu ya chini na ufanisi wa juu. Ni bidhaa isiyo na risasi inayolingana na maagizo ya RoHS. Rangi inayotolewa ni kijani yenye urefu wa wimbi kuu la 525nm, ikitumia teknolojia ya InGaN. Kifaa hiki kinasambazwa kwenye ufungaji wa mkanda na reel kwa michakato ya usanikishaji ya otomatiki.

1.1 Faida Kuu Iliyoundwa kwa urahisi wa usanikishaji wa bodi ya saketi. Uthabiti wa hali thabiti na maisha marefu ya uendeshaji. Matumizi ya nguvu ya chini na ufanisi wa juu wa mwanga. Uumbaji wa kirafiki kwa mazingira, bila risasi, na unaolingana na RoHS. Inapatikana katika umbo la kishikio la pembe-mraba linaloweza kusonganishwa kwa ufungaji mbalimbali. Inasambazwa kwenye mkanda na reel kwa uzalishaji wa ufanisi wa wingi.

1.2 Matumizi Lengwa LED hii inafaa kwa anuwai ya matumizi katika tasnia nyingi, zikiwemo: Vifaa vya kompyuta na viashiria vya hali. Vifaa vya mawasiliano. Vifaa vya umeme vya watumiaji. Paneli za udhibiti wa viwanda na mashine.

4. Uchambuzi wa Mviringo wa Utendaji Ingawa miviringo maalum ya picha inarejelewa kwenye waraka wa maelezo, tafsiri zifuatazo zinatokana na tabia ya kawaida ya LED na vigezo vilivyotolewa:

4.1 Mviringo wa Mkondo wa Mbele dhidi ya Voltage ya Mbele (Mviringo wa I-V) Voltage ya mbele (VF) ina safu maalum ya 2.4V hadi 3.3V kwa 10mA. Tabia ya I-V ni ya kielelezo. Kuendesha LED juu ya mkondo wake uliokadiriwa kutasababisha ongezeko kubwa la voltage ya mbele na matumizi ya nguvu, kwa uwezekano wa kuzidi viwango vya juu kabisa. Dereva wa mkondo wa mara kwa mara unapendekezwa sana kuliko chanzo cha voltage ya mara kwa mara ili kuhakikisha utoaji thabiti wa mwanga na umri mrefu.

5.2 Maelezo ya Ufungaji Kifaa kinasambazwa katika umbo la kawaida la tasnia la mkanda na reel. Mkanda wa Kubeba: Umetengenezwa kwa aloi ya polystyrene nyeusi inayoweza kuongoza, na unene wa 0.50 ±0.06 mm. Uwezo wa Reel: Vipande 400 kwa kila reel ya inchi 13. Ufungaji wa Kikasha: Reel 1 imefungwa pamoja na kikaushi na kadi ya kiashiria cha unyevu kwenye Mfuko wa Kizuizi cha Unyevu (MBB). MBB 2 (jumla ya vipande 800) zimefungwa kwenye Kikasha cha Ndani. Vikasha 10 vya Ndani (jumla ya vipande 8,000) vimefungwa kwenye Kikasha cha Nje.

6. Miongozo ya Kuuza na Usanikishaji

6.1 Uhifadhi na Ushughulikiaji Kifurushi Kilichotiwa Muhuri: Hifadhi kwa ≤30°C na ≤70% RH. Tumia ndani ya mwaka mmoja baada ya kufungua mfuko wa kinga ya unyevu. Kifurushi Kilichofunguliwa: Hifadhi kwa ≤30°C na ≤60% RH. Vipengele vinapaswa kurejeshwa kwa IR ndani ya masaa 168 (wiki 1) baada ya kufichuliwa. Kwa uhifadhi zaidi ya masaa 168, choma kwa 60°C kwa angalau masaa 48 kabla ya kuuza ili kuzuia uharibifu unaosababishwa na unyevu ("popcorning") wakati wa kurejesha.

10. Mfano wa Matumizi ya Vitendo Hali: Kubuni paneli ya viashiria vya hali nyingi kwa kidhibiti cha viwanda. Mfanyabiashara anahitaji viashiria vya kijani vya "Mfumo wa Kawaida" kwenye paneli ya wima. Wanachagua LED hii na kishikio cha pembe-mraba kwa urahisi wa kusanikisha PCB na mtazamo wazi wa upande. Ili kuhakikisha muonekano sawa, wanabainisha Kikundi KL kwa nguvu (310-520 mcd) na Kikundi G10 kwa urefu wa wimbi (520-527 nm) katika agizo lao la ununuzi. Kwenye PCB, wanaweka LED zilizo na nafasi ya katikati-hadi-katikati inayolingana na alama ya kishikio. Saketi ya kuendesha hutumia reli ya 5V na vizuizi vya mkondo vya 180Ω kwa kila LED, na kuweka mkondo kwa ~10mA. Wakati wa usanikishaji, timu ya uzalishaji hufuata sheria ya maisha ya sakafu ya masaa 168, ikichoma reeli zozote zilizofichuliwa kabla ya kuuza bodi kwa wimbi. Matokeo yake ni paneli yenye viashiria thabiti vya kijani vya kung'aa vinavyoonekana wazi kutoka kwa msimamo wa mwendeshaji.

11. Kanuni ya Uendeshaji Hii ni diode inayotoa mwanga ya semikondukta (LED). Wakati voltage ya mbele inayozidi voltage yake ya tabia ya mbele (VF) inatumika, elektroni na mashimo hujumuishwa tena ndani ya eneo lenye shughuli la nyenzo ya semikondukta ya InGaN (Indiamu Galiamu Nitraidi). Mchakato huu wa kujumuishwa tena hutoa nishati kwa namna ya fotoni (mwanga). Muundo maalum wa aloi ya InGaN huamua nishati ya pengo la bendi, ambayo inabainisha moja kwa moja urefu wa wimbi (rangi) ya mwanga unaotolewa—katika kesi hii, kijani kwa takriban 525-535 nm. Lenzi iliyotawanyika ya epoksi hufunga die ya semikondukta, hutoa kinga ya mitambo, na huunda utoaji wa mwanga kuwa pembe pana ya kuona.

. Binning System Specification

To ensure color and brightness consistency in production, LEDs are sorted into bins. Designers must specify bin codes when ordering to guarantee performance within a defined range.

.1 Luminous Intensity Binning

Binning is performed at a forward current of 10mA. The tolerance for each bin limit is ±15%.

.2 Dominant Wavelength Binning

Binning is performed at a forward current of 10mA. The tolerance for each bin limit is ±1nm.

. Performance Curve Analysis

While specific graphical curves are referenced in the datasheet, the following interpretations are based on standard LED behavior and the provided parameters:

.1 Forward Current vs. Forward Voltage (I-V Curve)

The forward voltage (VF) has a specified range of 2.4V to 3.3V at 10mA. The I-V characteristic is exponential. Operating the LED above its rated current will cause a significant increase in forward voltage and power dissipation, potentially exceeding the maximum ratings. A constant current driver is strongly recommended over a constant voltage source to ensure stable luminous output and longevity.

.2 Luminous Intensity vs. Forward Current

Luminous intensity is approximately proportional to the forward current within the recommended operating range. However, efficiency may decrease at very high currents due to increased thermal effects. The specified Iv values are at 10mA; driving at the maximum DC current of 20mA will yield higher intensity but must be done with careful thermal management.

.3 Temperature Dependence

The luminous intensity of LEDs typically decreases as the junction temperature increases. While the datasheet provides operating temperature limits (-30°C to +85°C), the actual light output at the upper limit will be lower than at 25°C. For applications requiring stable brightness over a wide temperature range, thermal design on the PCB and potential brightness compensation in the drive circuit should be considered.

. Mechanical & Packaging Information

.1 Outline Dimensions and Assembly

The LED is designed to mate with a specific right-angle black plastic holder. Key mechanical notes include:

.2 Packaging Specification

The device is supplied in an industry-standard tape and reel format.

. Soldering & Assembly Guidelines

.1 Storage and Handling

.2 Soldering Process

A minimum clearance of 2mm must be maintained between the base of the lens/holder and the solder point.

.3 Application Cautions

. Design Considerations & Application Notes

.1 Circuit Design

Always use a series current-limiting resistor or a constant-current driver circuit. Calculate the resistor value using the formula: R = (Vsupply - VF) / IF, where VF should be taken as the maximum value from the datasheet (3.3V) to ensure the current does not exceed the limit even with a low-VF LED. For a 5V supply and 10mA target current, the resistor would be approximately (5V - 3.3V) / 0.01A = 170 Ω. A standard 180 Ω resistor would be a safe choice.

.2 Thermal Management

Although power dissipation is low (64mW max), ensuring adequate heat dissipation from the LED junction extends lifespan and maintains brightness stability. The right-angle plastic holder provides some isolation, but the PCB layout should avoid placing the LED near other significant heat sources. For applications running at the maximum DC current (20mA), thermal considerations become more important.

.3 Optical Integration

The 100-degree viewing angle and diffused lens provide a wide, soft light emission suitable for status indicators that need to be visible from various angles. For applications requiring a more focused beam, secondary optics would be necessary. The green color (525-535nm) is in a region of high sensitivity for the human eye, making it highly effective for attention-grabbing indicators.

. Technical Comparison & Differentiation

This through-hole LED differentiates itself through its integration with a dedicated right-angle holder (CBI), offering a complete, easy-to-assemble indicator solution. Compared to surface-mount LEDs, through-hole versions like this one often provide superior mechanical strength for applications subject to vibration or manual handling. The specific binning structure for both intensity and wavelength allows for precise color and brightness matching in multi-indicator panels, a key advantage over unbinned or broadly binned commodity LEDs. The comprehensive moisture sensitivity and soldering guidelines also indicate a product designed for robust, reliable manufacturing processes.

. Frequently Asked Questions (FAQ)

.1 What is the difference between Peak Wavelength and Dominant Wavelength?

Peak Wavelength (λP) is the physical wavelength at which the LED emits the most optical power. Dominant Wavelength (λd) is a calculated value based on human color perception (CIE chart) that represents the single wavelength we perceive the light to be. For green LEDs, they are often close, but λd is the more relevant parameter for color specification.

.2 Can I drive this LED at 20mA continuously?

Yes, 20mA is the maximum recommended DC forward current. However, operating at this maximum will generate more heat and may reduce the LED's lifespan compared to operating at a lower current like 10mA. Ensure the ambient temperature is within spec and consider thermal design if many LEDs are used.

.3 Why is the luminous intensity range so wide (180-880 mcd)?

This is the total possible range across all production. The binning system (HJ, KL, MN) divides this range into smaller, more consistent groups. You must specify your required bin code(s) when ordering to get LEDs within a predictable brightness range for your application.

.4 Is baking always required if the bag is opened for more than 168 hours?

Yes, baking at 60°C for 48 hours is strongly recommended to drive out absorbed moisture. Skipping this step risks vapor pressure buildup during the high-temperature soldering process, which can cause internal delamination or cracking ("popcorning"), leading to immediate or latent failure.

. Practical Application Example

Scenario: Designing a multi-status indicator panel for an industrial controller.

A designer needs green "System Normal" indicators on a vertical panel. They choose this LED with the right-angle holder for easy PCB mounting and a clear side-view. To ensure uniform appearance, they specify Bin KL for intensity (310-520 mcd) and Bin G10 for wavelength (520-527 nm) in their purchase order. On the PCB, they place the LEDs with a center-to-center spacing that matches the holder's footprint. The drive circuit uses a 5V rail and 180Ω current-limiting resistors for each LED, setting the current to ~10mA. During assembly, the production team follows the 168-hour floor life rule, baking any exposed reels before wave soldering the board. The result is a panel with consistent, bright green indicators that are clearly visible from the operator's position.

. Operating Principle

This is a semiconductor light-emitting diode (LED). When a forward voltage exceeding its characteristic forward voltage (VF) is applied, electrons and holes recombine within the active region of the InGaN (Indium Gallium Nitride) semiconductor material. This recombination process releases energy in the form of photons (light). The specific composition of the InGaN alloy determines the bandgap energy, which directly defines the wavelength (color) of the emitted light—in this case, green at approximately 525-535 nm. The diffused epoxy lens encapsulates the semiconductor die, provides mechanical protection, and shapes the light output into a wide viewing angle.

. Technology Trends

While through-hole LEDs remain vital for robustness and certain assembly types, the broader industry trend is toward surface-mount device (SMD) LEDs due to their smaller size, suitability for automated pick-and-place, and better thermal path to the PCB. However, through-hole versions like this one continue to serve applications requiring higher mechanical bond strength, easier manual prototyping, or specific optical formats (like right-angle viewing). Advancements in phosphor-converted and direct-color semiconductor materials continue to improve the efficiency, color rendering, and maximum brightness of all LED types, including through-hole packages. The emphasis on precise binning and moisture sensitivity handling, as seen in this datasheet, reflects the industry's drive toward higher reliability and consistency in both consumer and industrial electronics.

Istilahi ya Mafanikio ya LED

Maelezo kamili ya istilahi za kiufundi za LED

Utendaji wa Fotoelektriki

Neno Kipimo/Uwakilishaji Maelezo Rahisi Kwa Nini Muhimu
Ufanisi wa Mwanga lm/W (lumen kwa watt) Pato la mwanga kwa watt ya umeme, juu zaidi inamaanisha ufanisi zaidi wa nishati. Moja kwa moja huamua daraja la ufanisi wa nishati na gharama ya umeme.
Mtiririko wa Mwanga lm (lumen) Jumla ya mwanga unaotolewa na chanzo, kwa kawaida huitwa "mwangaza". Huamua ikiwa mwanga ni mkali wa kutosha.
Pembe ya Kutazama ° (digrii), k.m., 120° Pembe ambayo ukali wa mwanga hupungua hadi nusu, huamua upana wa boriti. Husaidiana na anuwai ya taa na usawa.
Joto la Rangi K (Kelvin), k.m., 2700K/6500K Uzito/baridi ya mwanga, thamani za chini ni za manjano/moto, za juu ni nyeupe/baridi. Huamua mazingira ya taa na matukio yanayofaa.
Kiwango cha Kurejesha Rangi Hakuna kipimo, 0–100 Uwezo wa kuonyesha rangi za vitu kwa usahihi, Ra≥80 ni nzuri. Husaidiana na ukweli wa rangi, hutumiwa katika maeneo yenye mahitaji makubwa kama vile maduka makubwa, makumbusho.
UVumilivu wa Rangi Hatua za duaradufu za MacAdam, k.m., "hatua 5" Kipimo cha uthabiti wa rangi, hatua ndogo zina maana rangi thabiti zaidi. Inahakikisha rangi sawa katika kundi moja ya LED.
Urefu wa Mawimbi Kuu nm (nanomita), k.m., 620nm (nyekundu) Urefu wa mawimbi unaolingana na rangi ya LED zenye rangi. Huamua rangi ya LED nyekundu, ya manjano, ya kijani kibichi zenye rangi moja.
Usambazaji wa Wigo Mkondo wa urefu wa mawimbi dhidi ya ukali Inaonyesha usambazaji wa ukali katika urefu wa mawimbi. Husaidiana na uwasilishaji wa rangi na ubora.

Vigezo vya Umeme

Neno Ishara Maelezo Rahisi Vizingatiaji vya Uundaji
Voltage ya Mbele Vf Voltage ya chini kabisa kuwasha LED, kama "kizingiti cha kuanza". Voltage ya kiendeshi lazima iwe ≥Vf, voltage huongezeka kwa LED zinazofuatana.
Mkondo wa Mbele If Thamani ya mkondo wa uendeshaji wa kawaida wa LED. Kwa kawaida kuendesha kwa mkondo wa mara kwa mara, mkondo huamua mwangaza na muda wa maisha.
Mkondo wa Pigo wa Juu Ifp Mkondo wa kilele unaoweza kustahimili kwa muda mfupi, hutumiwa kwa kudhoofisha au kumulika. Upana wa pigo na mzunguko wa kazi lazima udhibitiwe kwa ukali ili kuzuia uharibifu.
Voltage ya Nyuma Vr Voltage ya juu ya nyuma ambayo LED inaweza kustahimili, zaidi ya hapo inaweza kusababisha kuvunjika. Mzunguko lazima uzuie muunganisho wa nyuma au mipigo ya voltage.
Upinzani wa Moto Rth (°C/W) Upinzani wa uhamishaji wa joto kutoka chip hadi solder, chini ni bora. Upinzani wa juu wa moto unahitaji upotezaji wa joto wa nguvu zaidi.
Kinga ya ESD V (HBM), k.m., 1000V Uwezo wa kustahimili utokaji umeme, juu zaidi inamaanisha hatari ndogo. Hatua za kuzuia umeme zinahitajika katika uzalishaji, hasa kwa LED nyeti.

Usimamizi wa Joto na Uaminifu

Neno Kipimo Muhimu Maelezo Rahisi Athari
Joto la Makutano Tj (°C) Joto halisi la uendeshaji ndani ya chip ya LED. Kila kupungua kwa 10°C kunaweza kuongeza muda wa maisha maradufu; juu sana husababisha kupungua kwa mwanga, mabadiliko ya rangi.
Upungufu wa Lumen L70 / L80 (saa) Muda wa mwangaza kushuka hadi 70% au 80% ya mwanzo. Moja kwa moja hufafanua "muda wa huduma" wa LED.
Matengenezo ya Lumen % (k.m., 70%) Asilimia ya mwangaza uliobakizwa baada ya muda. Inaonyesha udumishaji wa mwangaza juu ya matumizi ya muda mrefu.
Mabadiliko ya Rangi Δu′v′ au duaradufu ya MacAdam Kiwango cha mabadiliko ya rangi wakati wa matumizi. Husaidiana na uthabiti wa rangi katika mandhari ya taa.
Kuzeeka kwa Moto Uharibifu wa nyenzo Uharibifu kutokana na joto la juu la muda mrefu. Kunaweza kusababisha kupungua kwa mwangaza, mabadiliko ya rangi, au kushindwa kwa mzunguko wazi.

Ufungaji na Vifaa

Neno Aina za Kawaida Maelezo Rahisi Vipengele na Matumizi
Aina ya Kifurushi EMC, PPA, Kauri Nyenzo ya nyumba zinazolinda chip, zinazotoa kiolesura cha macho/moto. EMC: upinzani mzuri wa joto, gharama nafuu; Kauri: upotezaji bora wa joto, maisha marefu.
Muundo wa Chip Mbele, Chip ya Kugeuza Upangaji wa elektrodi za chip. Chip ya kugeuza: upotezaji bora wa joto, ufanisi wa juu, kwa nguvu ya juu.
Mipako ya Fosforasi YAG, Siliketi, Nitradi Inafunika chip ya bluu, inabadilisha baadhi kuwa manjano/nyekundu, huchanganya kuwa nyeupe. Fosforasi tofauti huathiri ufanisi, CCT, na CRI.
Lensi/Optiki Tambaa, Lensi Ndogo, TIR Muundo wa macho juu ya uso unaodhibiti usambazaji wa mwanga. Huamua pembe ya kutazama na mkunjo wa usambazaji wa mwanga.

Udhibiti wa Ubora na Uainishaji

Neno Maudhui ya Kugawa Maelezo Rahisi Madhumuni
Bin ya Mtiririko wa Mwanga Msimbo k.m. 2G, 2H Imegawanywa kulingana na mwangaza, kila kikundi kina thamani ya chini/ya juu ya lumen. Inahakikisha mwangaza sawa katika kundi moja.
Bin ya Voltage Msimbo k.m. 6W, 6X Imegawanywa kulingana na anuwai ya voltage ya mbele. Hurahisisha mechi ya kiendeshi, huboresha ufanisi wa mfumo.
Bin ya Rangi Duaradufu ya MacAdam ya hatua 5 Imegawanywa kulingana na kuratibu za rangi, kuhakikisha anuwai nyembamba. Inahakikisha uthabiti wa rangi, huzuia rangi isiyo sawa ndani ya kifaa.
Bin ya CCT 2700K, 3000K n.k. Imegawanywa kulingana na CCT, kila moja ina anuwai inayolingana ya kuratibu. Inakidhi mahitaji tofauti ya CCT ya tukio.

Kupima na Uthibitishaji

Neno Kiwango/Majaribio Maelezo Rahisi Umuhimu
LM-80 Majaribio ya ulinzi wa lumen Mwanga wa muda mrefu kwa joto la kawaida, kurekodi uharibifu wa mwangaza. Inatumika kukadiria maisha ya LED (na TM-21).
TM-21 Kiwango cha makadirio ya maisha Inakadiria maisha chini ya hali halisi kulingana na data ya LM-80. Inatoa utabiri wa kisayansi wa maisha.
IESNA Jumuiya ya Uhandisi wa Taa Inajumuisha mbinu za majaribio ya macho, umeme, joto. Msingi wa majaribio unayotambuliwa na tasnia.
RoHS / REACH Udhibitisho wa mazingira Inahakikisha hakuna vitu vya hatari (risasi, zebaki). Mahitaji ya kuingia kwenye soko kimataifa.
ENERGY STAR / DLC Udhibitisho wa ufanisi wa nishati Udhibitisho wa ufanisi wa nishati na utendaji wa taa. Inatumika katika ununuzi wa serikali, programu za ruzuku, huongeza ushindani.