Chagua Lugha

Karatasi ya Data ya Taa ya LED ya T-1 3/4 334-15/X1C5-1QSA - Nyeupe ya Joto - 3.2V Kawaida - Pembe ya Kuona ya 50° - Hati ya Kiufundi ya Kiswahili

Karatasi ya data ya kiufundi kwa taa ya LED yenye mwanga mzuri wa joto katika kifurushi cha T-1 3/4. Inajumuisha vipimo vya voltage ya mbele, nguvu ya mwanga, rangi, na miongozo ya kina ya matumizi.
smdled.org | PDF Size: 0.3 MB
Ukadiriaji: 4.5/5
Ukadiriaji Wako
Umeshakadiria hati hii
Kifuniko cha Hati ya PDF - Karatasi ya Data ya Taa ya LED ya T-1 3/4 334-15/X1C5-1QSA - Nyeupe ya Joto - 3.2V Kawaida - Pembe ya Kuona ya 50° - Hati ya Kiufundi ya Kiswahili

1. Muhtasari wa Bidhaa

Hati hii inaelezea kwa kina vipimo vya taa ya LED yenye mwanga mzuri wa joto na utendaji bora. Kifaa hiki kimeundwa kwa matumizi yanayohitaji pato kubwa la mwanga ndani ya kifurushi kidogo cha kiwango cha tasnia. Kazi yake ya msingi ni kutoa mwanga wenye ufanisi na unaotegemeka katika anuwai ya matumizi ya viashiria na taa.

1.1 Faida za Msingi na Soko Lengwa

Faida kuu za LED hii ni pamoja na pato lake la juu la nguvu ya mwanga na utoaji wa mwanga mzuri wa joto, unaopatikana kupitia mfumo wa ubadilishaji wa fosforasi. Imehifadhiwa katika kifurushi maarufu cha duara cha T-1 3/4, kuhakikisha utangamano mpana na soketi na miundo iliyopo. Kifaa hiki pia kinatii viwango vinavyohusika vya mazingira na usimamizi, kikiwa na kinga ya ESD na kufuata RoHS. Matumizi yake lengwa ni mbalimbali, yanajumuisha paneli za ujumbe, viashiria vya macho, moduli za taa ya nyuma, na taa za alama ambapo ishara wazi na nyepesi inahitajika.

2. Uchambuzi wa kina wa Vigezo vya Kiufundi

Sehemu hii inatoa uchambuzi wa kielelezo wa sifa kuu za umeme, macho, na joto za kifaa kama ilivyofafanuliwa katika karatasi ya data.

2.1 Viwango vya Juu Kabisa

Viwango hivi vinafafanua mipaka ya mkazo ambayo inaweza kusababisha uharibifu wa kudumu kwa kifaa. Hazikusudiwi kwa uendeshaji wa kawaida.

2.2 Sifa za Umeme na Macho

Hizi ni vigezo vya kawaida vya utendaji vinavyopimwa kwa 25°C chini ya hali za kawaida za majaribio (IF=20mA isipokuwa ikibainishwa).

3. Maelezo ya Mfumo wa Kikundi

Kifaa hiki kimegawanywa katika vikundi ili kuhakikisha uthabiti katika vigezo muhimu. Hii inawaruhusu wabunifu kuchagua LED zinazolingana na mahitaji yao maalum ya mwangaza na voltage ya mbele.

3.1 Kikundi cha Nguvu ya Mwanga

LED zimepangwa katika vikundi vitatu vya msingi kulingana na nguvu yao ya chini ya mwanga kwa 20mA:

- Kikundi Q:3600 - 4500 mcd

- Kikundi R:4500 - 5650 mcd

- Kikundi S:5650 - 7150 mcd

Uvumilivu wa ±10% unatumika kwa thamani hizi. Kuchagua kikundi cha juu zaidi (mf., S) kunahakikisha kifaa chenye mwangaza zaidi.

3.2 Kikundi cha Voltage ya Mbele

Ili kusaidia katika kufananisha mkondo kwa muunganisho wa mfululizo au muundo sahihi wa kiendesha, LED pia zimegawanywa kwa voltage ya mbele:

- Kikundi 0:2.8 - 3.0 V

- Kikundi 1:3.0 - 3.2 V

- Kikundi 2:3.2 - 3.4 V

- Kikundi 3:3.4 - 3.6 V

Kutokuwa na uhakika kwa kipimo ni ±0.1V.

3.3 Kikundi cha Rangi (Chromaticity)

Rangi ya nyeupe ya joto imefafanuliwa ndani ya eneo maalum kwenye mchoro wa chromaticity wa CIE 1931. Karatasi ya data inatoa viwianishi vya pembe kwa safu sita za rangi (D1, D2, E1, E2, F1, F2), ambazo zimewekwa pamoja (Kikundi 1). Kundi hili linaonyesha kwamba safu hizi zote ziko ndani ya nafasi ya rangi ya nyeupe ya joto inayokubalika, na F1/F2 ikiwa ya joto zaidi (joto la rangi lililohusishwa la chini) na D1/D2 ikiwa ya baridi zaidi. Viwianishi vya kawaida (x=0.40, y=0.39) viko ndani ya eneo hili lililogawanywa.

4. Uchambuzi wa Mkunjo wa Utendaji

Grafu zilizotolewa zinatoa ufahamu juu ya tabia ya kifaa chini ya hali tofauti.

4.1 Nguvu ya Jamaa dhidi ya Wavelength

Mkunjo wa usambazaji wa nguvu wa wigo unaonyesha kilele kikubwa cha utoaji katika wigo unaoonekana, sifa ya LED nyeupe iliyobadilishwa na fosforasi. Kilele kiko katika eneo la manjano, na sehemu ya chini ya bluu kutoka kwa chip ya InGaN, na kusababisha muonekano wa nyeupe ya joto.

4.2 Mkondo wa Mbele dhidi ya Voltage ya Mbele (Mkunjo wa IV)

Mkunjo huu unaonyesha uhusiano wa kielelezo unao kawaida wa diode. Voltage ya mbele huongezeka kwa logarithmically na mkondo. Mkunjo huu ni muhimu kwa kubuni viendesha vya mkondo wa mara kwa mara, kwani mabadiliko madogo katika voltage yanaweza kusababisha mabadiliko makubwa katika mkondo.

4.3 Nguvu ya J

Luminous output increases with forward current but not linearly. The curve may show a region of near-linear increase followed by a roll-off at higher currents due to efficiency droop and thermal effects. Operating at or below the recommended 20mA test current is advised for optimal efficiency and longevity.

.4 Chromaticity vs. Forward Current & Thermal Performance

The chromaticity coordinates may shift slightly with drive current. The graph showing forward current vs. ambient temperature is crucial for thermal management. As ambient temperature rises, the maximum allowable forward current for a given junction temperature decreases. This derating curve must be followed to prevent overheating.

.5 Directivity Pattern

The radiation pattern graph illustrates the spatial distribution of light. The T-1 3/4 package with a rounded lens produces a smooth, wide beam with the advertised 50-degree viewing angle.

. Mechanical and Package Information

.1 Package Dimensions

The LED uses a standard T-1 3/4 (5mm) round package. Key dimensional notes include:

- All dimensions are in millimeters with a general tolerance of ±0.25mm unless specified otherwise.

- Lead spacing is measured at the point where the leads exit the package body.

- The maximum protrusion of the resin below the flange is 1.5mm.

- The dimensional drawing provides exact measurements for overall length, lens diameter, lead diameter, and bending points, which are critical for PCB footprint design and mechanical fitting.

.2 Polarity Identification

Polarity is typically indicated by the lead length (the longer lead is the anode) or by a flat spot on the package flange. The cathode is usually connected to the lead adjacent to this flat. Correct polarity is essential for operation and to avoid applying reverse bias.

. Soldering and Assembly Guidelines

Proper handling is critical to reliability.

.1 Lead Forming

.2 Soldering Parameters

.3 Storage Conditions

. Packaging and Ordering Information

.1 Packing Specification

The LEDs are packaged to prevent damage from moisture, static, and physical shock:

- Packed in anti-electrostatic bags.

- Minimum 200 to maximum 500 pieces per bag.

- Five bags are placed in one inner carton.

- Ten inner cartons are packed into one master (outside) carton.

.2 Label Explanation

The label on the bag contains critical traceability and specification information:

- P/N:Part Number.

- QTY:Quantity in the bag.

- CAT:Combination code for Luminous Intensity and Forward Voltage bins.

- HUE:Color Rank (e.g., D1, F2).

- LOT No:Manufacturing lot number for traceability.

.3 Model Number Designation

The part number 334-15/X1C5-1QSA follows a structured format where the placeholder squares (□) likely represent codes for specific bins of luminous intensity, forward voltage, and color rank, allowing precise ordering of the desired performance grade.

. Application Suggestions

.1 Typical Application Scenarios

.2 Design Considerations

. Technical Comparison and Differentiation

Compared to generic 5mm white LEDs, this device offers several distinct advantages:

1. High Luminous Intensity:With bins up to 7150 mcd minimum, it delivers significantly more light output than standard indicator LEDs, enabling use in higher-ambient-light conditions.

2. Defined Warm White Chromaticity:The specified color coordinates and binning ensure a consistent, pleasant warm white color, unlike cool white or bluish-white LEDs.

3. Integrated Zener Protection:The built-in 5.2V Zener diode across the LED provides a measure of protection against reverse voltage spikes, enhancing reliability in electrically noisy environments.

4. Robust Specifications:Detailed maximum ratings, performance curves, and handling guidelines provide engineers with the data needed for reliable, long-term design.

. Frequently Asked Questions (Based on Technical Parameters)

Q: What is the difference between Bin Q, R, and S?

A: These bins categorize the minimum luminous intensity. Bin S is the brightest (5650-7150 mcd min), Bin R is medium (4500-5650 mcd min), and Bin Q is the standard brightness (3600-4500 mcd min). Choose based on your application's brightness requirement.

Q: Can I drive this LED at 30mA continuously?

A: While 30mA is the absolute maximum continuous rating, the standard test condition and typical operating point is 20mA. Operating at 30mA will produce more light but will generate more heat, potentially reducing lifespan and shifting color. For optimal reliability, design for 20mA or less.

Q: How do I interpret the color coordinates (x=0.40, y=0.39)?

A> These coordinates plot a point on the CIE 1931 chromaticity diagram. This specific point falls within the \"warm white\" region, typically associated with a correlated color temperature (CCT) in the range of 3000K-4000K, similar to the warm white of an incandescent or halogen bulb.

Q: The LED has a Zener diode. Does this mean I don't need a series resistor for reverse protection?

A: No. The Zener diode primarily clamps reverse voltage to about 5.2V, protecting the LED from reverse bias. You still absolutely require a current-limiting resistor (or constant-current driver) in series when powering the LED in the forward direction to control the current and prevent thermal runaway.

. Design and Usage Case Study

Scenario: Designing a multi-LED exit sign.

1. Requirement: LEDs to illuminate the word \"EXIT\". Need consistent brightness and color across all LEDs. Operates from a 12VDC power supply in an indoor environment (Ta max ~40°C).

2. LED Selection:Choose LEDs from the same Intensity Bin (e.g., Bin R) and the same Color Group (Group 1) to ensure uniformity. Selecting the same Forward Voltage Bin (e.g., Bin 1) will also help if connecting in parallel.

3. Circuit Design:Connect 3 LEDs in series with a current-limiting resistor, and create 4 such identical strings in parallel. For a Bin 1 LED (Vf typ 3.1V), three in series drop ~9.3V. For a 12V supply and a target current of 18mA (slightly derated for longevity), R = (12V - 9.3V) / 0.018A ≈ 150 Ω. Calculate resistor power rating: P = I²R = (0.018)² * 150 ≈ 0.049W, so a standard 1/8W (0.125W) resistor is sufficient.

4. Layout:Follow the mechanical drawing for PCB pad spacing. Ensure the 3mm lead bending rule is observed if leads need forming. Provide some spacing between LEDs for heat dissipation.

5. Result:A reliably illuminated sign with uniform appearance, operating within all specified limits of the LED.

. Operational Principle Introduction

This is a phosphor-converted white LED. The core light-emitting element is a semiconductor chip made of Indium Gallium Nitride (InGaN), which emits blue light when a forward current is applied across its p-n junction (electroluminescence). This blue light is not emitted directly. Instead, the LED's reflector cup is filled with a yellow (or yellow-red) phosphor material. When the blue photons from the chip strike the phosphor particles, they are absorbed. The phosphor then re-emits light across a broader spectrum, primarily in the yellow and red regions. The combination of the remaining unabsorbed blue light and the newly emitted yellow/red light mixes perceptually to create white light. The specific blend of phosphors determines the color temperature—in this case, a \"warm white\" with more red spectral content. The integrated Zener diode is a separate semiconductor component connected in parallel but with opposite polarity (cathode to anode) to protect the fragile LED junction from reverse voltage breakdown.

. Technology Trends and Context

The device described represents a mature, widely adopted technology. The T-1 3/4 (5mm) through-hole package has been an industry standard for decades for indicator and low-level lighting applications. Current trends in the broader LED industry are moving towards:

1. Increased Efficiency (lm/W):Newer chip designs and advanced phosphors continue to improve the amount of light output per electrical watt, reducing energy consumption.

2. Surface-Mount Device (SMD) Dominance:For most new designs, SMD packages (like 3528, 5050, or smaller) are preferred due to their smaller size, suitability for automated assembly, and often better thermal path to the PCB.

3. Higher Color Quality and Consistency:Tighter binning for color (using metrics like MacAdam Ellipses) and improved Color Rendering Index (CRI) are becoming standard for lighting applications.

4. Integrated Solutions:LEDs with built-in drivers (constant-current ICs), controllers, or multiple color channels (RGB, RGBW) in a single package are growing in popularity for smart lighting.

Despite these trends, the through-hole LED lamp remains highly relevant for applications requiring simple replacement, high single-point intensity, robustness in harsh environments, or where through-hole PCB assembly is specified. Its well-defined characteristics and long history make it a reliable and predictable choice for many engineering designs.

Istilahi ya Mafanikio ya LED

Maelezo kamili ya istilahi za kiufundi za LED

Utendaji wa Fotoelektriki

Neno Kipimo/Uwakilishaji Maelezo Rahisi Kwa Nini Muhimu
Ufanisi wa Mwanga lm/W (lumen kwa watt) Pato la mwanga kwa watt ya umeme, juu zaidi inamaanisha ufanisi zaidi wa nishati. Moja kwa moja huamua daraja la ufanisi wa nishati na gharama ya umeme.
Mtiririko wa Mwanga lm (lumen) Jumla ya mwanga unaotolewa na chanzo, kwa kawaida huitwa "mwangaza". Huamua ikiwa mwanga ni mkali wa kutosha.
Pembe ya Kutazama ° (digrii), k.m., 120° Pembe ambayo ukali wa mwanga hupungua hadi nusu, huamua upana wa boriti. Husaidiana na anuwai ya taa na usawa.
Joto la Rangi K (Kelvin), k.m., 2700K/6500K Uzito/baridi ya mwanga, thamani za chini ni za manjano/moto, za juu ni nyeupe/baridi. Huamua mazingira ya taa na matukio yanayofaa.
Kiwango cha Kurejesha Rangi Hakuna kipimo, 0–100 Uwezo wa kuonyesha rangi za vitu kwa usahihi, Ra≥80 ni nzuri. Husaidiana na ukweli wa rangi, hutumiwa katika maeneo yenye mahitaji makubwa kama vile maduka makubwa, makumbusho.
UVumilivu wa Rangi Hatua za duaradufu za MacAdam, k.m., "hatua 5" Kipimo cha uthabiti wa rangi, hatua ndogo zina maana rangi thabiti zaidi. Inahakikisha rangi sawa katika kundi moja ya LED.
Urefu wa Mawimbi Kuu nm (nanomita), k.m., 620nm (nyekundu) Urefu wa mawimbi unaolingana na rangi ya LED zenye rangi. Huamua rangi ya LED nyekundu, ya manjano, ya kijani kibichi zenye rangi moja.
Usambazaji wa Wigo Mkondo wa urefu wa mawimbi dhidi ya ukali Inaonyesha usambazaji wa ukali katika urefu wa mawimbi. Husaidiana na uwasilishaji wa rangi na ubora.

Vigezo vya Umeme

Neno Ishara Maelezo Rahisi Vizingatiaji vya Uundaji
Voltage ya Mbele Vf Voltage ya chini kabisa kuwasha LED, kama "kizingiti cha kuanza". Voltage ya kiendeshi lazima iwe ≥Vf, voltage huongezeka kwa LED zinazofuatana.
Mkondo wa Mbele If Thamani ya mkondo wa uendeshaji wa kawaida wa LED. Kwa kawaida kuendesha kwa mkondo wa mara kwa mara, mkondo huamua mwangaza na muda wa maisha.
Mkondo wa Pigo wa Juu Ifp Mkondo wa kilele unaoweza kustahimili kwa muda mfupi, hutumiwa kwa kudhoofisha au kumulika. Upana wa pigo na mzunguko wa kazi lazima udhibitiwe kwa ukali ili kuzuia uharibifu.
Voltage ya Nyuma Vr Voltage ya juu ya nyuma ambayo LED inaweza kustahimili, zaidi ya hapo inaweza kusababisha kuvunjika. Mzunguko lazima uzuie muunganisho wa nyuma au mipigo ya voltage.
Upinzani wa Moto Rth (°C/W) Upinzani wa uhamishaji wa joto kutoka chip hadi solder, chini ni bora. Upinzani wa juu wa moto unahitaji upotezaji wa joto wa nguvu zaidi.
Kinga ya ESD V (HBM), k.m., 1000V Uwezo wa kustahimili utokaji umeme, juu zaidi inamaanisha hatari ndogo. Hatua za kuzuia umeme zinahitajika katika uzalishaji, hasa kwa LED nyeti.

Usimamizi wa Joto na Uaminifu

Neno Kipimo Muhimu Maelezo Rahisi Athari
Joto la Makutano Tj (°C) Joto halisi la uendeshaji ndani ya chip ya LED. Kila kupungua kwa 10°C kunaweza kuongeza muda wa maisha maradufu; juu sana husababisha kupungua kwa mwanga, mabadiliko ya rangi.
Upungufu wa Lumen L70 / L80 (saa) Muda wa mwangaza kushuka hadi 70% au 80% ya mwanzo. Moja kwa moja hufafanua "muda wa huduma" wa LED.
Matengenezo ya Lumen % (k.m., 70%) Asilimia ya mwangaza uliobakizwa baada ya muda. Inaonyesha udumishaji wa mwangaza juu ya matumizi ya muda mrefu.
Mabadiliko ya Rangi Δu′v′ au duaradufu ya MacAdam Kiwango cha mabadiliko ya rangi wakati wa matumizi. Husaidiana na uthabiti wa rangi katika mandhari ya taa.
Kuzeeka kwa Moto Uharibifu wa nyenzo Uharibifu kutokana na joto la juu la muda mrefu. Kunaweza kusababisha kupungua kwa mwangaza, mabadiliko ya rangi, au kushindwa kwa mzunguko wazi.

Ufungaji na Vifaa

Neno Aina za Kawaida Maelezo Rahisi Vipengele na Matumizi
Aina ya Kifurushi EMC, PPA, Kauri Nyenzo ya nyumba zinazolinda chip, zinazotoa kiolesura cha macho/moto. EMC: upinzani mzuri wa joto, gharama nafuu; Kauri: upotezaji bora wa joto, maisha marefu.
Muundo wa Chip Mbele, Chip ya Kugeuza Upangaji wa elektrodi za chip. Chip ya kugeuza: upotezaji bora wa joto, ufanisi wa juu, kwa nguvu ya juu.
Mipako ya Fosforasi YAG, Siliketi, Nitradi Inafunika chip ya bluu, inabadilisha baadhi kuwa manjano/nyekundu, huchanganya kuwa nyeupe. Fosforasi tofauti huathiri ufanisi, CCT, na CRI.
Lensi/Optiki Tambaa, Lensi Ndogo, TIR Muundo wa macho juu ya uso unaodhibiti usambazaji wa mwanga. Huamua pembe ya kutazama na mkunjo wa usambazaji wa mwanga.

Udhibiti wa Ubora na Uainishaji

Neno Maudhui ya Kugawa Maelezo Rahisi Madhumuni
Bin ya Mtiririko wa Mwanga Msimbo k.m. 2G, 2H Imegawanywa kulingana na mwangaza, kila kikundi kina thamani ya chini/ya juu ya lumen. Inahakikisha mwangaza sawa katika kundi moja.
Bin ya Voltage Msimbo k.m. 6W, 6X Imegawanywa kulingana na anuwai ya voltage ya mbele. Hurahisisha mechi ya kiendeshi, huboresha ufanisi wa mfumo.
Bin ya Rangi Duaradufu ya MacAdam ya hatua 5 Imegawanywa kulingana na kuratibu za rangi, kuhakikisha anuwai nyembamba. Inahakikisha uthabiti wa rangi, huzuia rangi isiyo sawa ndani ya kifaa.
Bin ya CCT 2700K, 3000K n.k. Imegawanywa kulingana na CCT, kila moja ina anuwai inayolingana ya kuratibu. Inakidhi mahitaji tofauti ya CCT ya tukio.

Kupima na Uthibitishaji

Neno Kiwango/Majaribio Maelezo Rahisi Umuhimu
LM-80 Majaribio ya ulinzi wa lumen Mwanga wa muda mrefu kwa joto la kawaida, kurekodi uharibifu wa mwangaza. Inatumika kukadiria maisha ya LED (na TM-21).
TM-21 Kiwango cha makadirio ya maisha Inakadiria maisha chini ya hali halisi kulingana na data ya LM-80. Inatoa utabiri wa kisayansi wa maisha.
IESNA Jumuiya ya Uhandisi wa Taa Inajumuisha mbinu za majaribio ya macho, umeme, joto. Msingi wa majaribio unayotambuliwa na tasnia.
RoHS / REACH Udhibitisho wa mazingira Inahakikisha hakuna vitu vya hatari (risasi, zebaki). Mahitaji ya kuingia kwenye soko kimataifa.
ENERGY STAR / DLC Udhibitisho wa ufanisi wa nishati Udhibitisho wa ufanisi wa nishati na utendaji wa taa. Inatumika katika ununuzi wa serikali, programu za ruzuku, huongeza ushindani.