Yaliyomo
- 1. Muhtasari wa Bidhaa
- 1.1 Faida za Msingi na Soko Lengwa
- 2. Uchambuzi wa kina wa Vigezo vya Kiufundi
- 2.1 Viwango vya Juu Kabisa
- 2.2 Sifa za Umeme na Macho
- 3. Maelezo ya Mfumo wa Kikundi
- 3.1 Kikundi cha Nguvu ya Mwanga
- 3.2 Kikundi cha Voltage ya Mbele
- 3.3 Kikundi cha Rangi (Chromaticity)
- 4. Uchambuzi wa Mkunjo wa Utendaji
- 4.1 Nguvu ya Jamaa dhidi ya Wavelength
- 4.2 Mkondo wa Mbele dhidi ya Voltage ya Mbele (Mkunjo wa IV)
- 4.3 Nguvu ya J
- .4 Chromaticity vs. Forward Current & Thermal Performance
- .5 Directivity Pattern
- . Mechanical and Package Information
- .1 Package Dimensions
- .2 Polarity Identification
- . Soldering and Assembly Guidelines
- .1 Lead Forming
- .2 Soldering Parameters
- .3 Storage Conditions
- . Packaging and Ordering Information
- .1 Packing Specification
- .2 Label Explanation
- .3 Model Number Designation
- . Application Suggestions
- .1 Typical Application Scenarios
- .2 Design Considerations
- . Technical Comparison and Differentiation
- . Frequently Asked Questions (Based on Technical Parameters)
- . Design and Usage Case Study
- . Operational Principle Introduction
- . Technology Trends and Context
1. Muhtasari wa Bidhaa
Hati hii inaelezea kwa kina vipimo vya taa ya LED yenye mwanga mzuri wa joto na utendaji bora. Kifaa hiki kimeundwa kwa matumizi yanayohitaji pato kubwa la mwanga ndani ya kifurushi kidogo cha kiwango cha tasnia. Kazi yake ya msingi ni kutoa mwanga wenye ufanisi na unaotegemeka katika anuwai ya matumizi ya viashiria na taa.
1.1 Faida za Msingi na Soko Lengwa
Faida kuu za LED hii ni pamoja na pato lake la juu la nguvu ya mwanga na utoaji wa mwanga mzuri wa joto, unaopatikana kupitia mfumo wa ubadilishaji wa fosforasi. Imehifadhiwa katika kifurushi maarufu cha duara cha T-1 3/4, kuhakikisha utangamano mpana na soketi na miundo iliyopo. Kifaa hiki pia kinatii viwango vinavyohusika vya mazingira na usimamizi, kikiwa na kinga ya ESD na kufuata RoHS. Matumizi yake lengwa ni mbalimbali, yanajumuisha paneli za ujumbe, viashiria vya macho, moduli za taa ya nyuma, na taa za alama ambapo ishara wazi na nyepesi inahitajika.
2. Uchambuzi wa kina wa Vigezo vya Kiufundi
Sehemu hii inatoa uchambuzi wa kielelezo wa sifa kuu za umeme, macho, na joto za kifaa kama ilivyofafanuliwa katika karatasi ya data.
2.1 Viwango vya Juu Kabisa
Viwango hivi vinafafanua mipaka ya mkazo ambayo inaweza kusababisha uharibifu wa kudumu kwa kifaa. Hazikusudiwi kwa uendeshaji wa kawaida.
- Mkondo wa Mbele unaoendelea (IF):30 mA. Kuzidi mkondo huu kwa mfululizo kutaongeza mkazo kwenye makutano ya semikondukta.
- Mkondo wa Mbele wa Kilele (IFP):100 mA kwa mzunguko wa kazi wa 1/10 na 1 kHz. Hii inaruhusu mipigo mifupi ya mkondo wa juu zaidi, muhimu katika matumizi ya maonyesho mengi.
- Voltage ya Nyuma (VR):5 V. Kutumia voltage ya upendeleo wa nyuma kubwa kuliko hii kunaweza kusababisha kuvunjika kwa makutano.
- Mtawanyiko wa Nguvu (Pd):110 mW. Hii ndiyo nguvu ya juu kabisa ambayo kifurushi kinaweza kutawanya kama joto chini ya hali maalum.
- Joto la Uendeshaji na Uhifadhi:-40°C hadi +85°C na -40°C hadi +100°C, mtawaliwa, kufafanua uimara wa kifaa katika mazingira.
- Kuvumilia ESD (HBM):4 kV, ikionyesha kiwango kizuri cha kinga dhidi ya utokaji umeme tuli wakati wa usimamizi.
- Joto la Kuuza:260°C kwa sekunde 5, ikibainisha uvumilivu wa wasifu wa kuuza kwa kuyeyusha.
2.2 Sifa za Umeme na Macho
Hizi ni vigezo vya kawaida vya utendaji vinavyopimwa kwa 25°C chini ya hali za kawaida za majaribio (IF=20mA isipokuwa ikibainishwa).
- Voltage ya Mbele (VF):2.8V hadi 3.6V. Kupungua kwa voltage kwenye LED wakati inapopita umeme. Thamani ya kawaida iko karibu 3.2V. Wabunifu lazima kuhakikisha mzunguko wa kuendesha unaweza kubeba anuwai hii.
- Nguvu ya Mwanga (IV):Inatofautiana kutoka 3600 mcd hadi 7150 mcd kiwango cha chini, kulingana na kikundi maalum (angalia Sehemu ya 3). Nguvu hii kubwa ya mwanga ni kipengele muhimu kwa matumizi yanayohitaji kuonekana kwa juu.
- Pembe ya Kuona (2θ1/2):Digrii 50 (kawaida). Hii inafafanua upana wa pembe ambapo nguvu ya mwanga hupungua hadi nusu ya thamani yake ya kilele, na kusababisha boriti yenye upana wa wastani.
- Viwianishi vya Rangi (x, y):x=0.40, y=0.39 (kawaida) kulingana na nafasi ya rangi ya CIE 1931. Hii huweka rangi iliyotolewa katika eneo la nyeupe ya joto.
- Voltage ya Nyuma ya Zener (Vz):5.2V kawaida kwa Iz=5mA. Kipengele hiki cha kinga kilichojumuishwa husaidia kulinda LED kutoka kwa mabadiliko ya ghafla ya voltage ya nyuma.
- Mkondo wa Nyuma (IR):50 µA kiwango cha juu kwa VR=5V, ikionyesha uvujaji mdogo sana katika hali ya kuzima.
3. Maelezo ya Mfumo wa Kikundi
Kifaa hiki kimegawanywa katika vikundi ili kuhakikisha uthabiti katika vigezo muhimu. Hii inawaruhusu wabunifu kuchagua LED zinazolingana na mahitaji yao maalum ya mwangaza na voltage ya mbele.
3.1 Kikundi cha Nguvu ya Mwanga
LED zimepangwa katika vikundi vitatu vya msingi kulingana na nguvu yao ya chini ya mwanga kwa 20mA:
- Kikundi Q:3600 - 4500 mcd
- Kikundi R:4500 - 5650 mcd
- Kikundi S:5650 - 7150 mcd
Uvumilivu wa ±10% unatumika kwa thamani hizi. Kuchagua kikundi cha juu zaidi (mf., S) kunahakikisha kifaa chenye mwangaza zaidi.
3.2 Kikundi cha Voltage ya Mbele
Ili kusaidia katika kufananisha mkondo kwa muunganisho wa mfululizo au muundo sahihi wa kiendesha, LED pia zimegawanywa kwa voltage ya mbele:
- Kikundi 0:2.8 - 3.0 V
- Kikundi 1:3.0 - 3.2 V
- Kikundi 2:3.2 - 3.4 V
- Kikundi 3:3.4 - 3.6 V
Kutokuwa na uhakika kwa kipimo ni ±0.1V.
3.3 Kikundi cha Rangi (Chromaticity)
Rangi ya nyeupe ya joto imefafanuliwa ndani ya eneo maalum kwenye mchoro wa chromaticity wa CIE 1931. Karatasi ya data inatoa viwianishi vya pembe kwa safu sita za rangi (D1, D2, E1, E2, F1, F2), ambazo zimewekwa pamoja (Kikundi 1). Kundi hili linaonyesha kwamba safu hizi zote ziko ndani ya nafasi ya rangi ya nyeupe ya joto inayokubalika, na F1/F2 ikiwa ya joto zaidi (joto la rangi lililohusishwa la chini) na D1/D2 ikiwa ya baridi zaidi. Viwianishi vya kawaida (x=0.40, y=0.39) viko ndani ya eneo hili lililogawanywa.
4. Uchambuzi wa Mkunjo wa Utendaji
Grafu zilizotolewa zinatoa ufahamu juu ya tabia ya kifaa chini ya hali tofauti.
4.1 Nguvu ya Jamaa dhidi ya Wavelength
Mkunjo wa usambazaji wa nguvu wa wigo unaonyesha kilele kikubwa cha utoaji katika wigo unaoonekana, sifa ya LED nyeupe iliyobadilishwa na fosforasi. Kilele kiko katika eneo la manjano, na sehemu ya chini ya bluu kutoka kwa chip ya InGaN, na kusababisha muonekano wa nyeupe ya joto.
4.2 Mkondo wa Mbele dhidi ya Voltage ya Mbele (Mkunjo wa IV)
Mkunjo huu unaonyesha uhusiano wa kielelezo unao kawaida wa diode. Voltage ya mbele huongezeka kwa logarithmically na mkondo. Mkunjo huu ni muhimu kwa kubuni viendesha vya mkondo wa mara kwa mara, kwani mabadiliko madogo katika voltage yanaweza kusababisha mabadiliko makubwa katika mkondo.
4.3 Nguvu ya J
Luminous output increases with forward current but not linearly. The curve may show a region of near-linear increase followed by a roll-off at higher currents due to efficiency droop and thermal effects. Operating at or below the recommended 20mA test current is advised for optimal efficiency and longevity.
.4 Chromaticity vs. Forward Current & Thermal Performance
The chromaticity coordinates may shift slightly with drive current. The graph showing forward current vs. ambient temperature is crucial for thermal management. As ambient temperature rises, the maximum allowable forward current for a given junction temperature decreases. This derating curve must be followed to prevent overheating.
.5 Directivity Pattern
The radiation pattern graph illustrates the spatial distribution of light. The T-1 3/4 package with a rounded lens produces a smooth, wide beam with the advertised 50-degree viewing angle.
. Mechanical and Package Information
.1 Package Dimensions
The LED uses a standard T-1 3/4 (5mm) round package. Key dimensional notes include:
- All dimensions are in millimeters with a general tolerance of ±0.25mm unless specified otherwise.
- Lead spacing is measured at the point where the leads exit the package body.
- The maximum protrusion of the resin below the flange is 1.5mm.
- The dimensional drawing provides exact measurements for overall length, lens diameter, lead diameter, and bending points, which are critical for PCB footprint design and mechanical fitting.
.2 Polarity Identification
Polarity is typically indicated by the lead length (the longer lead is the anode) or by a flat spot on the package flange. The cathode is usually connected to the lead adjacent to this flat. Correct polarity is essential for operation and to avoid applying reverse bias.
. Soldering and Assembly Guidelines
Proper handling is critical to reliability.
.1 Lead Forming
- Bending must occur at least 3mm from the base of the epoxy bulb to avoid stress on the internal die and wire bonds.
- Form leads before soldering. Applying stress to a soldered joint can damage the PCB or the LED.
- Use proper tools to avoid stressing the package. Misalignment during PCB mounting can cause permanent stress.
- Cut leads at room temperature. High-temperature cutting can transfer heat and damage the device.
- Ensure PCB holes align perfectly with LED leads to avoid forced insertion.
.2 Soldering Parameters
- Hand Soldering:Iron tip temperature maximum 300°C (for a 30W max iron), with a soldering time not exceeding 3 seconds per lead.
- Wave/DIP Soldering:Maximum preheat temperature of 100°C for up to 60 seconds.
- Maintain a distance of more than 3mm from the solder joint to the epoxy bulb. Soldering beyond the base of the tie bar (the small metal support between the leads inside the package) is recommended.
.3 Storage Conditions
- Store at ≤30°C and ≤70% Relative Humidity after receipt. The recommended storage life in this condition is 3 months.
- For longer storage (up to one year), place the LEDs in a sealed container with a nitrogen atmosphere and desiccant.
- Avoid rapid temperature changes in high humidity to prevent condensation on and inside the package.
. Packaging and Ordering Information
.1 Packing Specification
The LEDs are packaged to prevent damage from moisture, static, and physical shock:
- Packed in anti-electrostatic bags.
- Minimum 200 to maximum 500 pieces per bag.
- Five bags are placed in one inner carton.
- Ten inner cartons are packed into one master (outside) carton.
.2 Label Explanation
The label on the bag contains critical traceability and specification information:
- P/N:Part Number.
- QTY:Quantity in the bag.
- CAT:Combination code for Luminous Intensity and Forward Voltage bins.
- HUE:Color Rank (e.g., D1, F2).
- LOT No:Manufacturing lot number for traceability.
.3 Model Number Designation
The part number 334-15/X1C5-1QSA follows a structured format where the placeholder squares (□) likely represent codes for specific bins of luminous intensity, forward voltage, and color rank, allowing precise ordering of the desired performance grade.
. Application Suggestions
.1 Typical Application Scenarios
- Message Panels & Scoreboards:Its high intensity and wide viewing angle make it suitable for character illumination in indoor/outdoor displays.
- Optical Indicators:Ideal for status lights on industrial equipment, consumer electronics, or control panels where a warm white indication is preferred.
- Backlighting:Can be used for edge-lighting small panels, signage, or decorative lighting.
- Marker Lights:Suitable for position indicators, exit signs, or low-level ambient pathway lighting.
.2 Design Considerations
- Current Limiting:Always drive with a constant current source or a current-limiting resistor. Calculate the resistor value based on the supply voltage (Vs), the LED's forward voltage (Vf from its bin), and the desired current (e.g., 20mA): R = (Vs - Vf) / If.
- Thermal Management:While the package is not designed for high-power dissipation, ensure adequate ventilation in the application, especially if multiple LEDs are used or if operated near maximum current. Follow the current derating curve for elevated ambient temperatures.
- ESD Protection:Although rated for 4kV HBM, implement standard ESD precautions during assembly.
- Optical Design:The 50° viewing angle provides a good balance between beam width and intensity. For narrower beams, secondary optics (lenses) would be required.
. Technical Comparison and Differentiation
Compared to generic 5mm white LEDs, this device offers several distinct advantages:
1. High Luminous Intensity:With bins up to 7150 mcd minimum, it delivers significantly more light output than standard indicator LEDs, enabling use in higher-ambient-light conditions.
2. Defined Warm White Chromaticity:The specified color coordinates and binning ensure a consistent, pleasant warm white color, unlike cool white or bluish-white LEDs.
3. Integrated Zener Protection:The built-in 5.2V Zener diode across the LED provides a measure of protection against reverse voltage spikes, enhancing reliability in electrically noisy environments.
4. Robust Specifications:Detailed maximum ratings, performance curves, and handling guidelines provide engineers with the data needed for reliable, long-term design.
. Frequently Asked Questions (Based on Technical Parameters)
Q: What is the difference between Bin Q, R, and S?
A: These bins categorize the minimum luminous intensity. Bin S is the brightest (5650-7150 mcd min), Bin R is medium (4500-5650 mcd min), and Bin Q is the standard brightness (3600-4500 mcd min). Choose based on your application's brightness requirement.
Q: Can I drive this LED at 30mA continuously?
A: While 30mA is the absolute maximum continuous rating, the standard test condition and typical operating point is 20mA. Operating at 30mA will produce more light but will generate more heat, potentially reducing lifespan and shifting color. For optimal reliability, design for 20mA or less.
Q: How do I interpret the color coordinates (x=0.40, y=0.39)?
A> These coordinates plot a point on the CIE 1931 chromaticity diagram. This specific point falls within the \"warm white\" region, typically associated with a correlated color temperature (CCT) in the range of 3000K-4000K, similar to the warm white of an incandescent or halogen bulb.
Q: The LED has a Zener diode. Does this mean I don't need a series resistor for reverse protection?
A: No. The Zener diode primarily clamps reverse voltage to about 5.2V, protecting the LED from reverse bias. You still absolutely require a current-limiting resistor (or constant-current driver) in series when powering the LED in the forward direction to control the current and prevent thermal runaway.
. Design and Usage Case Study
Scenario: Designing a multi-LED exit sign.
1. Requirement: LEDs to illuminate the word \"EXIT\". Need consistent brightness and color across all LEDs. Operates from a 12VDC power supply in an indoor environment (Ta max ~40°C).
2. LED Selection:Choose LEDs from the same Intensity Bin (e.g., Bin R) and the same Color Group (Group 1) to ensure uniformity. Selecting the same Forward Voltage Bin (e.g., Bin 1) will also help if connecting in parallel.
3. Circuit Design:Connect 3 LEDs in series with a current-limiting resistor, and create 4 such identical strings in parallel. For a Bin 1 LED (Vf typ 3.1V), three in series drop ~9.3V. For a 12V supply and a target current of 18mA (slightly derated for longevity), R = (12V - 9.3V) / 0.018A ≈ 150 Ω. Calculate resistor power rating: P = I²R = (0.018)² * 150 ≈ 0.049W, so a standard 1/8W (0.125W) resistor is sufficient.
4. Layout:Follow the mechanical drawing for PCB pad spacing. Ensure the 3mm lead bending rule is observed if leads need forming. Provide some spacing between LEDs for heat dissipation.
5. Result:A reliably illuminated sign with uniform appearance, operating within all specified limits of the LED.
. Operational Principle Introduction
This is a phosphor-converted white LED. The core light-emitting element is a semiconductor chip made of Indium Gallium Nitride (InGaN), which emits blue light when a forward current is applied across its p-n junction (electroluminescence). This blue light is not emitted directly. Instead, the LED's reflector cup is filled with a yellow (or yellow-red) phosphor material. When the blue photons from the chip strike the phosphor particles, they are absorbed. The phosphor then re-emits light across a broader spectrum, primarily in the yellow and red regions. The combination of the remaining unabsorbed blue light and the newly emitted yellow/red light mixes perceptually to create white light. The specific blend of phosphors determines the color temperature—in this case, a \"warm white\" with more red spectral content. The integrated Zener diode is a separate semiconductor component connected in parallel but with opposite polarity (cathode to anode) to protect the fragile LED junction from reverse voltage breakdown.
. Technology Trends and Context
The device described represents a mature, widely adopted technology. The T-1 3/4 (5mm) through-hole package has been an industry standard for decades for indicator and low-level lighting applications. Current trends in the broader LED industry are moving towards:
1. Increased Efficiency (lm/W):Newer chip designs and advanced phosphors continue to improve the amount of light output per electrical watt, reducing energy consumption.
2. Surface-Mount Device (SMD) Dominance:For most new designs, SMD packages (like 3528, 5050, or smaller) are preferred due to their smaller size, suitability for automated assembly, and often better thermal path to the PCB.
3. Higher Color Quality and Consistency:Tighter binning for color (using metrics like MacAdam Ellipses) and improved Color Rendering Index (CRI) are becoming standard for lighting applications.
4. Integrated Solutions:LEDs with built-in drivers (constant-current ICs), controllers, or multiple color channels (RGB, RGBW) in a single package are growing in popularity for smart lighting.
Despite these trends, the through-hole LED lamp remains highly relevant for applications requiring simple replacement, high single-point intensity, robustness in harsh environments, or where through-hole PCB assembly is specified. Its well-defined characteristics and long history make it a reliable and predictable choice for many engineering designs.
Istilahi ya Mafanikio ya LED
Maelezo kamili ya istilahi za kiufundi za LED
Utendaji wa Fotoelektriki
| Neno | Kipimo/Uwakilishaji | Maelezo Rahisi | Kwa Nini Muhimu |
|---|---|---|---|
| Ufanisi wa Mwanga | lm/W (lumen kwa watt) | Pato la mwanga kwa watt ya umeme, juu zaidi inamaanisha ufanisi zaidi wa nishati. | Moja kwa moja huamua daraja la ufanisi wa nishati na gharama ya umeme. |
| Mtiririko wa Mwanga | lm (lumen) | Jumla ya mwanga unaotolewa na chanzo, kwa kawaida huitwa "mwangaza". | Huamua ikiwa mwanga ni mkali wa kutosha. |
| Pembe ya Kutazama | ° (digrii), k.m., 120° | Pembe ambayo ukali wa mwanga hupungua hadi nusu, huamua upana wa boriti. | Husaidiana na anuwai ya taa na usawa. |
| Joto la Rangi | K (Kelvin), k.m., 2700K/6500K | Uzito/baridi ya mwanga, thamani za chini ni za manjano/moto, za juu ni nyeupe/baridi. | Huamua mazingira ya taa na matukio yanayofaa. |
| Kiwango cha Kurejesha Rangi | Hakuna kipimo, 0–100 | Uwezo wa kuonyesha rangi za vitu kwa usahihi, Ra≥80 ni nzuri. | Husaidiana na ukweli wa rangi, hutumiwa katika maeneo yenye mahitaji makubwa kama vile maduka makubwa, makumbusho. |
| UVumilivu wa Rangi | Hatua za duaradufu za MacAdam, k.m., "hatua 5" | Kipimo cha uthabiti wa rangi, hatua ndogo zina maana rangi thabiti zaidi. | Inahakikisha rangi sawa katika kundi moja ya LED. |
| Urefu wa Mawimbi Kuu | nm (nanomita), k.m., 620nm (nyekundu) | Urefu wa mawimbi unaolingana na rangi ya LED zenye rangi. | Huamua rangi ya LED nyekundu, ya manjano, ya kijani kibichi zenye rangi moja. |
| Usambazaji wa Wigo | Mkondo wa urefu wa mawimbi dhidi ya ukali | Inaonyesha usambazaji wa ukali katika urefu wa mawimbi. | Husaidiana na uwasilishaji wa rangi na ubora. |
Vigezo vya Umeme
| Neno | Ishara | Maelezo Rahisi | Vizingatiaji vya Uundaji |
|---|---|---|---|
| Voltage ya Mbele | Vf | Voltage ya chini kabisa kuwasha LED, kama "kizingiti cha kuanza". | Voltage ya kiendeshi lazima iwe ≥Vf, voltage huongezeka kwa LED zinazofuatana. |
| Mkondo wa Mbele | If | Thamani ya mkondo wa uendeshaji wa kawaida wa LED. | Kwa kawaida kuendesha kwa mkondo wa mara kwa mara, mkondo huamua mwangaza na muda wa maisha. |
| Mkondo wa Pigo wa Juu | Ifp | Mkondo wa kilele unaoweza kustahimili kwa muda mfupi, hutumiwa kwa kudhoofisha au kumulika. | Upana wa pigo na mzunguko wa kazi lazima udhibitiwe kwa ukali ili kuzuia uharibifu. |
| Voltage ya Nyuma | Vr | Voltage ya juu ya nyuma ambayo LED inaweza kustahimili, zaidi ya hapo inaweza kusababisha kuvunjika. | Mzunguko lazima uzuie muunganisho wa nyuma au mipigo ya voltage. |
| Upinzani wa Moto | Rth (°C/W) | Upinzani wa uhamishaji wa joto kutoka chip hadi solder, chini ni bora. | Upinzani wa juu wa moto unahitaji upotezaji wa joto wa nguvu zaidi. |
| Kinga ya ESD | V (HBM), k.m., 1000V | Uwezo wa kustahimili utokaji umeme, juu zaidi inamaanisha hatari ndogo. | Hatua za kuzuia umeme zinahitajika katika uzalishaji, hasa kwa LED nyeti. |
Usimamizi wa Joto na Uaminifu
| Neno | Kipimo Muhimu | Maelezo Rahisi | Athari |
|---|---|---|---|
| Joto la Makutano | Tj (°C) | Joto halisi la uendeshaji ndani ya chip ya LED. | Kila kupungua kwa 10°C kunaweza kuongeza muda wa maisha maradufu; juu sana husababisha kupungua kwa mwanga, mabadiliko ya rangi. |
| Upungufu wa Lumen | L70 / L80 (saa) | Muda wa mwangaza kushuka hadi 70% au 80% ya mwanzo. | Moja kwa moja hufafanua "muda wa huduma" wa LED. |
| Matengenezo ya Lumen | % (k.m., 70%) | Asilimia ya mwangaza uliobakizwa baada ya muda. | Inaonyesha udumishaji wa mwangaza juu ya matumizi ya muda mrefu. |
| Mabadiliko ya Rangi | Δu′v′ au duaradufu ya MacAdam | Kiwango cha mabadiliko ya rangi wakati wa matumizi. | Husaidiana na uthabiti wa rangi katika mandhari ya taa. |
| Kuzeeka kwa Moto | Uharibifu wa nyenzo | Uharibifu kutokana na joto la juu la muda mrefu. | Kunaweza kusababisha kupungua kwa mwangaza, mabadiliko ya rangi, au kushindwa kwa mzunguko wazi. |
Ufungaji na Vifaa
| Neno | Aina za Kawaida | Maelezo Rahisi | Vipengele na Matumizi |
|---|---|---|---|
| Aina ya Kifurushi | EMC, PPA, Kauri | Nyenzo ya nyumba zinazolinda chip, zinazotoa kiolesura cha macho/moto. | EMC: upinzani mzuri wa joto, gharama nafuu; Kauri: upotezaji bora wa joto, maisha marefu. |
| Muundo wa Chip | Mbele, Chip ya Kugeuza | Upangaji wa elektrodi za chip. | Chip ya kugeuza: upotezaji bora wa joto, ufanisi wa juu, kwa nguvu ya juu. |
| Mipako ya Fosforasi | YAG, Siliketi, Nitradi | Inafunika chip ya bluu, inabadilisha baadhi kuwa manjano/nyekundu, huchanganya kuwa nyeupe. | Fosforasi tofauti huathiri ufanisi, CCT, na CRI. |
| Lensi/Optiki | Tambaa, Lensi Ndogo, TIR | Muundo wa macho juu ya uso unaodhibiti usambazaji wa mwanga. | Huamua pembe ya kutazama na mkunjo wa usambazaji wa mwanga. |
Udhibiti wa Ubora na Uainishaji
| Neno | Maudhui ya Kugawa | Maelezo Rahisi | Madhumuni |
|---|---|---|---|
| Bin ya Mtiririko wa Mwanga | Msimbo k.m. 2G, 2H | Imegawanywa kulingana na mwangaza, kila kikundi kina thamani ya chini/ya juu ya lumen. | Inahakikisha mwangaza sawa katika kundi moja. |
| Bin ya Voltage | Msimbo k.m. 6W, 6X | Imegawanywa kulingana na anuwai ya voltage ya mbele. | Hurahisisha mechi ya kiendeshi, huboresha ufanisi wa mfumo. |
| Bin ya Rangi | Duaradufu ya MacAdam ya hatua 5 | Imegawanywa kulingana na kuratibu za rangi, kuhakikisha anuwai nyembamba. | Inahakikisha uthabiti wa rangi, huzuia rangi isiyo sawa ndani ya kifaa. |
| Bin ya CCT | 2700K, 3000K n.k. | Imegawanywa kulingana na CCT, kila moja ina anuwai inayolingana ya kuratibu. | Inakidhi mahitaji tofauti ya CCT ya tukio. |
Kupima na Uthibitishaji
| Neno | Kiwango/Majaribio | Maelezo Rahisi | Umuhimu |
|---|---|---|---|
| LM-80 | Majaribio ya ulinzi wa lumen | Mwanga wa muda mrefu kwa joto la kawaida, kurekodi uharibifu wa mwangaza. | Inatumika kukadiria maisha ya LED (na TM-21). |
| TM-21 | Kiwango cha makadirio ya maisha | Inakadiria maisha chini ya hali halisi kulingana na data ya LM-80. | Inatoa utabiri wa kisayansi wa maisha. |
| IESNA | Jumuiya ya Uhandisi wa Taa | Inajumuisha mbinu za majaribio ya macho, umeme, joto. | Msingi wa majaribio unayotambuliwa na tasnia. |
| RoHS / REACH | Udhibitisho wa mazingira | Inahakikisha hakuna vitu vya hatari (risasi, zebaki). | Mahitaji ya kuingia kwenye soko kimataifa. |
| ENERGY STAR / DLC | Udhibitisho wa ufanisi wa nishati | Udhibitisho wa ufanisi wa nishati na utendaji wa taa. | Inatumika katika ununuzi wa serikali, programu za ruzuku, huongeza ushindani. |