Select language

Inverse Design of Metasurface-Enhanced Micro-LEDs Using the Fourier Modal Method

A novel simulation capability based on the Fourier Modal Method, enabling efficient and precise inverse design of micro-LEDs integrated with metasurface structures to enhance light extraction efficiency.
smdled.org | Ukubwa wa PDF: 0.8 MB
Alama: 4.5/5
Ukadirio wako
Tayari umekadiria hati hii
PDF Jalada la Uvumba - Ubunzilivu wa Kubuni Kinyume wa Micro-LED Ulioimarishwa na Meta-surface Kulingana na Mbinu ya Fourier Modal

1. Utangulizi

Micro-scale Light Emitting Diodes (µLEDs) ni vipengele muhimu vya vionyeshi vya kizazi kijacho, hasa katika matumizi ya Ukweli Iliyoongezwa ambayo yanahitaji mwangaza wa juu sana na ufanisi wa nishati. Ufanisi wa Uchimbaji wa Mwanga ni kipimo muhimu cha utendaji. Mbinu za jadi za kubuni zinakabiliwa na changamoto ya utata wa hesabu wakati wa kuiga vyanzo vya mwanga visivyo na mshikamano wa anga (k.m., mionzi ya hiari) ya µLEDs, na kufanya mbinu za hali ya juu za uboreshaji kama vile ubunifu wa nyuma ziwe ngumu kukokotolea. Utafiti huu unaletua mfumo wa uigizaji unaotegemea Njia ya Modal ya Fourier, unaovuka kikwazo hiki na kuwezesha ubunifu wa nyuma wenye ufanisi na usahihi wa µLEDs zilizoimarishwa na metasurfaces.

2. Mbinu

The core of this work is an improved and extended Fourier modal method.

2.1 Misingi ya Njia ya Modal ya Fourier

FMM, pia inayojulikana kama uchambuzi wa mawimbi yanayounganishwa kwa ukali, hutumia kupanua uga wa sumakuumeme katika msingi wa Fourier uliokatwa, kuiga uga wa sumakuumeme katika vyombo vya habari vilivyotengenezwa kwa tabaka na kurudia. Uga katika mwelekeo wa tabaka (kwa mfano, mwelekeo wa wima katika muundo wa tabaka) unashughulikiwa kwa njia ya uchambuzi. Hii husababisha mfumo wa mstari, ukubwa wake unategemea tu utata wa ndani ya uso (pande mbili), na hivyo kuruhusu kutumia njia za moja kwa moja kutatua matriki ya mfumo ndogo.

2.2 Upanuzi wa Uundaji wa Vyanzo vya Mwanga Visivyo na Uwiano

FMM ya kawaida inadhania kuwa chanzo cha mwanga kina mzunguko. Kuiga chanzo kimoja cha mwanga kisicho na mshikamano kilichoko mahali (kama vile dipole katika µLED) kama chenye mzunguko kunaleta ushirikiano usio wa kifizikia. Waandishi walifanikisha hili kwa kutekelezaUjumuishaji wa eneo la Brillouin [17-19] kutatua tatizo hili. Mbinu hii inahusisha kuchukua sampuli na kujumlisha matokeo ya vekta nyingi za wimbi ndani ya eneo la Brillouin, hivyo kuiga kwa ufanisi vyanzo vya mwanga vilivyopo ndani ya safu ya mara kwa mara bila kusababisha athari za ushirikiano bandia.

2.3 Addressing Convergence Challenges

The classical FMM formulation suffers from poor convergence in structures containing metals or materials with high refractive index contrast (i.e., the "Li factorization" problem [16]). This work employs the FMM'svectorial formulationand improves the method for computing the vector fields, thereby significantly enhancing the convergence speed for the challenging material stacks in µLEDs.

3. Technical Implementation and FMMAX

This method is implemented in a tool namedFMMAX. A key advantage for inverse design is computational reuse: the expensive eigen decomposition step required to build the system matrix for each layer only needs to be recalculated when the profile of that layer changes. During optimization, many layers may remain unchanged between iterations, which brings significant computational savings.

4. Results and Performance

Sababu ya Kasi

>107x

Ikilinganisha na FDTD inayotegemea CPU

Uboreshaji wa LEE

2x

Metasurfaces via Inverse Design

4.1 Speed and Accuracy Benchmarking

Mbinu ya msingi wa FMM imefikia usahihi unaolinganishwa na kiwango cha dhahabu cha usahihi wa hesabu ya umeme ya sumaku—Uchanganuzi wa Tofauti ya Muda Mdogo—wakati kasi yakeimeongezeka zaidi ya mara milioni kumi.. Mabadiliko haya makubwa ya utendaji yamefanya ubunifu wa nyuma usiowezekana kuwa unaowezekana.

4.2 Uchunguzi wa Kesi ya Ubunifu wa Kinyume

The capability of this method is validated by reverse-designing a metasurface integrated on top of a µLED. Compared to an unoptimized benchmark device, the optimized metasurface enablesa doubling of the light extraction efficiency. Furthermore, the speed of this method enables the generation of high-resolution LEE spatial distribution maps, providing new physical insights into device performance.

Mchoro maelezo (dhana): Grafu ya nguzo itaonyesha thamani ya kawaida ya "µLED isiyoboreshwa LEE" kama 1.0, na thamani ya "µLED iliyoimarishwa na metasurface (kubuni kinyume)" kama 2.0. Grafu iliyojumuishwa ya mstari inaweza kuonyesha mchakato wa muunganiko wa uboreshaji wa kubuni kinyume, ambapo kazi lengwa (k.m. 1/LEE) hushuka kwa kasi ndani ya marudio mia kadhaa.

5. Uchambuzi na Maoni ya Wataalam

Ufahamu Mkuu:

Uvumbuzi wa makala hii sio algorithm mpya kabisa, bali ni uboreshaji wa algorithm iliyopo (FMM) kwaUfufuaji wa Kimkakati na Uimarishaji, ili kutatua tatizo lililokadiriwa kuwa lisifanyiki kikokotozi (usimamizi wa chanzo cha mwanga lisilolingana). Hii ni mfano bora wa uhandisi unaotumika: kutambua kwamba kikwazo kiko katika kielelezo cha uigizaji sio katika kichakataji cha uboreshaji, na kuirekebisha kwa usahihi. Hii inabadilisha mtindo wa muundo wa µLED kutoka kwa marekebisho ya polepole, yanayotegemea hisi, hadi utafutaji wa haraka, unaoendeshwa na algorithm.

Mpangilio wa mantiki na ulinganisho:

作者正确地指出,先前的工作要么简化了物理模型(使用稀疏偶极子),要么简化了几何结构(利用对称性),使得三维逆向设计问题悬而未决。他们的解决方案流程非常优雅:1) 选择FMM,因其对分层结构具有固有的高效性。2) 用现代公式修复其已知缺陷(收敛性、周期性)。3) 利用由此产生的速度进行逆向设计。>107Madai ya kuongeza kasi ya x ni ya kushangaza. Ili kuelewa umuhimu wake, hii ni sawa na kufupisha wakati wa uigizaji unaohitaji mwaka mmoja hadi chini ya sekunde 3. Ingawa FDTD inajulikana kwa mahitaji makubwa ya kikokotozi, tofauti hii inaonyesha jinsi uchaguzi wa algorithm unavyotawala ukubwa wa hesabu. Hii inalingana na uzoefu katika nyanja zingine; kwa mfano,CycleGAN The success of [Zhu et al., 2017] did not stem from greater computational resources, but rather from its ingenious cycle consistency loss function, which enabled unpaired image translation in domains where previous methods had failed.

Advantages and Limitations:

Faida: Madai ya utendaji ni jiwe la thamani la taji, na ina mbinu wazi ya kusaidia. Kutumia ujumuishaji wa eneo la Brillouin ni suluhisho kamili la kitabu cha kusoma kwa tatizo la vyanzo vya mwanga vilivyo mahali. Utekelezaji wa chanzo wazi (FMMAX) ni mchango muhimu, unaokarabatia uthibitisho na utumiaji. Uboreshaji wa LEE kwa mara mbili ni matokeo halisi na yanayohusiana na tasnia.

Upungufu na maswali yanayoweza kutokea: This paper does not elaborate extensively on the specifics of the inverse design algorithm.Specific details(e.g., which adjoint method, regularization) is not discussed in detail. 107The acceleration of x, while reasonable for a single simulation, may diminish when considering the thousands of simulations required for a full inverse design loop—though it remains transformative. The method is inherently limited toMuundo wa mara kwa mara, uliopangwa kwa ngaziHaiwezi kushughulikia miundo halisi ya kiholela, isiyo na ngazi ya pande tatu. Katika eneo hili, mbinu kama vile FDTD-based topology optimization bado inatawala, ingawa kwa kasi ya chini.

Ufahamu unaoweza kutekelezwa:

ForAR/VR companies: This tool is the direct driving force for designing the next generation of ultra-high brightness, high-efficiency micro-displays. Prioritize integrating this simulation capability into your R&D process. ForPhotonics CAD/TCAD developers: Mafanikio ya FMMAX yanaonyesha wazi mahitaji ya soko kwa kisuluhishi maalum, chenye kasi, sio tu kisuluhishi cha jumla. Kukua kisuluhishi chenye moduli kinachoweza kuingizwa katika mfumo wa uboreshaji. KwaWatafiti: Wazo kuu—kubadilisha kisuluhishi "chenye kasi" kushughulikia fizikia "ngumu"—kina utendaji ulimwenguni. Chunguza kutumia kanuni zinazofanana (k.m., kutumia mbinu ya kipengele cha mpaka au kisuluhishi maalum cha FFT) kwa matatizo mengine ya usanifu wa kinyume katika akustiki, mitambo, au usimamizi wa joto.

6. Maelezo ya Kiufundi na Fomula za Hisabati

Mbinu ya Fourier Modal inatatua mfumo wa milinganyo ya Maxwell katika tabaka lenye mara kwa mara ya dielectric $\epsilon(x,y)$. Sehemu za umeme na sumaku zinafafanuliwa kwa kutumia mfululizo wa Fourier:

$$

ForIncoherent light sourcesThe key extension for involves calculating the total extracted power $P_{\text{ext}}$ of the dipole distribution by integrating over the Brillouin zone and summing over dipole positions $\mathbf{r}_0$ and orientations $\hat{\mathbf{p}}$:

$$

7. Mfumo wa Uchambuzi: Utafiti wa Kisa wa Dhana

Mazingira: Optimizing nano-patterned sapphire substrates for blue µLEDs to enhance LEE.

Framework Application:

  1. Parameterization: Define the nanopattern as a two-dimensional pixelated grating with a fixed period. The etch depth of each pixel is a design variable.
  2. Forward Model: Use FMMAX to calculate the LEE of the current structure. This tool efficiently handles multi-layer stacks (active region, p-GaN, NPSS, air).
  3. Hesabu ya Gradient: Inatumia njia ya kufuatana. Fomula ya FMM inaruhusu hesabu ya ufanisi wa wakati mmoja ya gradient ya LEE kuhusiana na vigezo vyote vya kina cha kuchonga — hatua ambayo kasi ni muhimu sana.
  4. Mzunguko wa Uboreshaji: Kina unatumia algorithmi zenye msingi wa gradient (k.m. L-BFGS) kusasisha kina cha kuchongwa ili kuongeza LEE. Matokeo ya mtengano wa sifa za tabaka zisizobadilishwa (kama eneo lenye uwezo sawasawa) huhifadhiwa kwenye kumbukumbu na kutumika tena.
  5. Uthibitishaji: Muundo wa mwisho usio wa kawaida uliogunduliwa na algorithmi utatengenezwa na kupimwa, ukionyesha LEE bora kuliko grati za mwanga za kawaida za mara kwa mara.
Uchambuzi huu wa kesi unaonyesha jinsi mfumo huu unavyoweza kugundua moja kwa moja miundo tata, isiyo wazi, ambayo inatawanya mwanga kwa ufanisi zaidi kuliko miundo iliyobuniwa na binadamu.

8. Matumizi ya Baadaye na Mwelekeo

  • Multi-Physics Optimization: Extend inverse design to simultaneously optimize LEE and electrical characteristics (current spreading, thermal management) as well as the color conversion efficiency of full-color µLEDs.
  • Beyond Display: The same fast incoherent light source modeling is applied to the inverse design of efficient solid-state lighting (LED bulbs), single-photon sources for quantum technology, and enhanced photodetectors.
  • Algorithm Integration: Unganisha FMMAX na mfumo wa kisasa zaidi wa uboreshaji, kwa mfano mifumo inayoshughulikia vikwazo vya malengo mengi au uzalishaji (ukubwa wa chini wa sifa, pembe ya kuchonga).
  • Ugunduzi wa nyenzo: Tumia mfumo huu katika mfumo wa "kufungwa", ukichanganya majaribio ya kasi ya juu, sio tu kubuni miundo, bali pia kupendekeza mchanganyiko mpya wa nyenzo zenye matumaini kwa tabaka zenye uwezo au nyuso za juu.
  • Mfano wa wakala wa mtandao wa neva: The speed of FMMAX enables the generation of massive datasets to train neural networks as ultra-fast surrogate models, thereby enabling real-time interactive design exploration.

9. Marejeo

  1. Z. Liu et al., "Micro-LEDs for augmented reality displays", Nature Photonics, vol. 15, pp. 1–12, 2021.
  2. J. A. Fan et al., "Inverse design of photonic structures", Nature Photonics, vol. 11, no. 9, pp. 543–554, 2017.
  3. L. Su et al., "Inverse design of nanophotonic structures using the adjoint method", IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2, 2020.
  4. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar grating diffraction," Journal of the Optical Society of America, vol. 71, no. 7, pp. 811–818, 1981.
  5. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," Journal of the Optical Society of America A, vol. 13, no. 4, pp. 779–784, 1996.
  6. J. Zhu et al., "Unpaired image-to-image translation using cycle-consistent adversarial networks," in Proceedings of the IEEE International Conference on Computer Vision, 2017. (An external reference for algorithmic insight comparison).
  7. U.S. Department of Energy, "Solid-State Lighting Research and Development Plan," 2022. (External reference for industry importance).
  8. L. Li, "Application of Fourier series in the analysis of discontinuous periodic structures," Journal of the Optical Society of America A, vol. 13, no. 9, pp. 1870–1876, 1996. (Reference for convergence challenges).
  9. M. F. S. Schubert and A. M. Hammond, "FMMAX: Fourier Modal Method for Layered Media," GitHub Repository, 2023. (Reference for implementation).